MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnf1o2 Structured version   Visualization version   GIF version

Theorem mapsnf1o2 8890
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
mapsncnv.f 𝐹 = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋))
Assertion
Ref Expression
mapsnf1o2 𝐹:(𝐵m 𝑆)–1-1-onto𝐵
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem mapsnf1o2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvex 6898 . . 3 (𝑥𝑋) ∈ V
2 mapsncnv.f . . 3 𝐹 = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋))
31, 2fnmpti 6687 . 2 𝐹 Fn (𝐵m 𝑆)
4 mapsncnv.s . . . . 5 𝑆 = {𝑋}
5 snex 5424 . . . . 5 {𝑋} ∈ V
64, 5eqeltri 2823 . . . 4 𝑆 ∈ V
7 snex 5424 . . . 4 {𝑦} ∈ V
86, 7xpex 7737 . . 3 (𝑆 × {𝑦}) ∈ V
9 mapsncnv.b . . . 4 𝐵 ∈ V
10 mapsncnv.x . . . 4 𝑋 ∈ V
114, 9, 10, 2mapsncnv 8889 . . 3 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
128, 11fnmpti 6687 . 2 𝐹 Fn 𝐵
13 dff1o4 6835 . 2 (𝐹:(𝐵m 𝑆)–1-1-onto𝐵 ↔ (𝐹 Fn (𝐵m 𝑆) ∧ 𝐹 Fn 𝐵))
143, 12, 13mpbir2an 708 1 𝐹:(𝐵m 𝑆)–1-1-onto𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  Vcvv 3468  {csn 4623  cmpt 5224   × cxp 5667  ccnv 5668   Fn wfn 6532  1-1-ontowf1o 6536  cfv 6537  (class class class)co 7405  m cmap 8822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-map 8824
This theorem is referenced by:  mapsnf1o3  8891  coe1sfi  22087  coe1mul2lem2  22142  ply1coe  22172  evl1var  22210  pf1mpf  22226  pf1ind  22229  deg1ldg  25983  deg1leb  25986
  Copyright terms: Public domain W3C validator