Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnf1o2 Structured version   Visualization version   GIF version

Theorem mapsnf1o2 8476
 Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
mapsncnv.f 𝐹 = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋))
Assertion
Ref Expression
mapsnf1o2 𝐹:(𝐵m 𝑆)–1-1-onto𝐵
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem mapsnf1o2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvex 6671 . . 3 (𝑥𝑋) ∈ V
2 mapsncnv.f . . 3 𝐹 = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋))
31, 2fnmpti 6474 . 2 𝐹 Fn (𝐵m 𝑆)
4 mapsncnv.s . . . . 5 𝑆 = {𝑋}
5 snex 5300 . . . . 5 {𝑋} ∈ V
64, 5eqeltri 2848 . . . 4 𝑆 ∈ V
7 snex 5300 . . . 4 {𝑦} ∈ V
86, 7xpex 7474 . . 3 (𝑆 × {𝑦}) ∈ V
9 mapsncnv.b . . . 4 𝐵 ∈ V
10 mapsncnv.x . . . 4 𝑋 ∈ V
114, 9, 10, 2mapsncnv 8475 . . 3 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
128, 11fnmpti 6474 . 2 𝐹 Fn 𝐵
13 dff1o4 6610 . 2 (𝐹:(𝐵m 𝑆)–1-1-onto𝐵 ↔ (𝐹 Fn (𝐵m 𝑆) ∧ 𝐹 Fn 𝐵))
143, 12, 13mpbir2an 710 1 𝐹:(𝐵m 𝑆)–1-1-onto𝐵
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   ∈ wcel 2111  Vcvv 3409  {csn 4522   ↦ cmpt 5112   × cxp 5522  ◡ccnv 5523   Fn wfn 6330  –1-1-onto→wf1o 6334  ‘cfv 6335  (class class class)co 7150   ↑m cmap 8416 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-map 8418 This theorem is referenced by:  mapsnf1o3  8477  coe1sfi  20937  coe1mul2lem2  20992  ply1coe  21020  evl1var  21055  pf1mpf  21071  pf1ind  21074  deg1ldg  24792  deg1leb  24795
 Copyright terms: Public domain W3C validator