| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapsnf1o2 | Structured version Visualization version GIF version | ||
| Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s | ⊢ 𝑆 = {𝑋} |
| mapsncnv.b | ⊢ 𝐵 ∈ V |
| mapsncnv.x | ⊢ 𝑋 ∈ V |
| mapsncnv.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) |
| Ref | Expression |
|---|---|
| mapsnf1o2 | ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6841 | . . 3 ⊢ (𝑥‘𝑋) ∈ V | |
| 2 | mapsncnv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) | |
| 3 | 1, 2 | fnmpti 6629 | . 2 ⊢ 𝐹 Fn (𝐵 ↑m 𝑆) |
| 4 | mapsncnv.s | . . . . 5 ⊢ 𝑆 = {𝑋} | |
| 5 | snex 5376 | . . . . 5 ⊢ {𝑋} ∈ V | |
| 6 | 4, 5 | eqeltri 2829 | . . . 4 ⊢ 𝑆 ∈ V |
| 7 | snex 5376 | . . . 4 ⊢ {𝑦} ∈ V | |
| 8 | 6, 7 | xpex 7692 | . . 3 ⊢ (𝑆 × {𝑦}) ∈ V |
| 9 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 10 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
| 11 | 4, 9, 10, 2 | mapsncnv 8823 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| 12 | 8, 11 | fnmpti 6629 | . 2 ⊢ ◡𝐹 Fn 𝐵 |
| 13 | dff1o4 6776 | . 2 ⊢ (𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 ↔ (𝐹 Fn (𝐵 ↑m 𝑆) ∧ ◡𝐹 Fn 𝐵)) | |
| 14 | 3, 12, 13 | mpbir2an 711 | 1 ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4575 ↦ cmpt 5174 × cxp 5617 ◡ccnv 5618 Fn wfn 6481 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 |
| This theorem is referenced by: mapsnf1o3 8825 coe1sfi 22127 coe1mul2lem2 22183 ply1coe 22214 evl1var 22252 pf1mpf 22268 pf1ind 22271 deg1ldg 26025 deg1leb 26028 |
| Copyright terms: Public domain | W3C validator |