![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapsnf1o2 | Structured version Visualization version GIF version |
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
mapsncnv.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) |
Ref | Expression |
---|---|
mapsnf1o2 | ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6933 | . . 3 ⊢ (𝑥‘𝑋) ∈ V | |
2 | mapsncnv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) | |
3 | 1, 2 | fnmpti 6723 | . 2 ⊢ 𝐹 Fn (𝐵 ↑m 𝑆) |
4 | mapsncnv.s | . . . . 5 ⊢ 𝑆 = {𝑋} | |
5 | snex 5451 | . . . . 5 ⊢ {𝑋} ∈ V | |
6 | 4, 5 | eqeltri 2840 | . . . 4 ⊢ 𝑆 ∈ V |
7 | snex 5451 | . . . 4 ⊢ {𝑦} ∈ V | |
8 | 6, 7 | xpex 7788 | . . 3 ⊢ (𝑆 × {𝑦}) ∈ V |
9 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
10 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
11 | 4, 9, 10, 2 | mapsncnv 8951 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
12 | 8, 11 | fnmpti 6723 | . 2 ⊢ ◡𝐹 Fn 𝐵 |
13 | dff1o4 6870 | . 2 ⊢ (𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 ↔ (𝐹 Fn (𝐵 ↑m 𝑆) ∧ ◡𝐹 Fn 𝐵)) | |
14 | 3, 12, 13 | mpbir2an 710 | 1 ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 ↦ cmpt 5249 × cxp 5698 ◡ccnv 5699 Fn wfn 6568 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 |
This theorem is referenced by: mapsnf1o3 8953 coe1sfi 22236 coe1mul2lem2 22292 ply1coe 22323 evl1var 22361 pf1mpf 22377 pf1ind 22380 deg1ldg 26151 deg1leb 26154 |
Copyright terms: Public domain | W3C validator |