Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mapsnf1o2 | Structured version Visualization version GIF version |
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
mapsncnv.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) |
Ref | Expression |
---|---|
mapsnf1o2 | ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6805 | . . 3 ⊢ (𝑥‘𝑋) ∈ V | |
2 | mapsncnv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) | |
3 | 1, 2 | fnmpti 6594 | . 2 ⊢ 𝐹 Fn (𝐵 ↑m 𝑆) |
4 | mapsncnv.s | . . . . 5 ⊢ 𝑆 = {𝑋} | |
5 | snex 5357 | . . . . 5 ⊢ {𝑋} ∈ V | |
6 | 4, 5 | eqeltri 2830 | . . . 4 ⊢ 𝑆 ∈ V |
7 | snex 5357 | . . . 4 ⊢ {𝑦} ∈ V | |
8 | 6, 7 | xpex 7623 | . . 3 ⊢ (𝑆 × {𝑦}) ∈ V |
9 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
10 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
11 | 4, 9, 10, 2 | mapsncnv 8701 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
12 | 8, 11 | fnmpti 6594 | . 2 ⊢ ◡𝐹 Fn 𝐵 |
13 | dff1o4 6742 | . 2 ⊢ (𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 ↔ (𝐹 Fn (𝐵 ↑m 𝑆) ∧ ◡𝐹 Fn 𝐵)) | |
14 | 3, 12, 13 | mpbir2an 707 | 1 ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2101 Vcvv 3434 {csn 4564 ↦ cmpt 5160 × cxp 5589 ◡ccnv 5590 Fn wfn 6442 –1-1-onto→wf1o 6446 ‘cfv 6447 (class class class)co 7295 ↑m cmap 8635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-oprab 7299 df-mpo 7300 df-1st 7851 df-2nd 7852 df-map 8637 |
This theorem is referenced by: mapsnf1o3 8703 coe1sfi 21412 coe1mul2lem2 21467 ply1coe 21495 evl1var 21530 pf1mpf 21546 pf1ind 21549 deg1ldg 25285 deg1leb 25288 |
Copyright terms: Public domain | W3C validator |