Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mapsnf1o2 | Structured version Visualization version GIF version |
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
mapsncnv.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) |
Ref | Expression |
---|---|
mapsnf1o2 | ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6769 | . . 3 ⊢ (𝑥‘𝑋) ∈ V | |
2 | mapsncnv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) | |
3 | 1, 2 | fnmpti 6560 | . 2 ⊢ 𝐹 Fn (𝐵 ↑m 𝑆) |
4 | mapsncnv.s | . . . . 5 ⊢ 𝑆 = {𝑋} | |
5 | snex 5349 | . . . . 5 ⊢ {𝑋} ∈ V | |
6 | 4, 5 | eqeltri 2835 | . . . 4 ⊢ 𝑆 ∈ V |
7 | snex 5349 | . . . 4 ⊢ {𝑦} ∈ V | |
8 | 6, 7 | xpex 7581 | . . 3 ⊢ (𝑆 × {𝑦}) ∈ V |
9 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
10 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
11 | 4, 9, 10, 2 | mapsncnv 8639 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
12 | 8, 11 | fnmpti 6560 | . 2 ⊢ ◡𝐹 Fn 𝐵 |
13 | dff1o4 6708 | . 2 ⊢ (𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 ↔ (𝐹 Fn (𝐵 ↑m 𝑆) ∧ ◡𝐹 Fn 𝐵)) | |
14 | 3, 12, 13 | mpbir2an 707 | 1 ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 ↦ cmpt 5153 × cxp 5578 ◡ccnv 5579 Fn wfn 6413 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 |
This theorem is referenced by: mapsnf1o3 8641 coe1sfi 21294 coe1mul2lem2 21349 ply1coe 21377 evl1var 21412 pf1mpf 21428 pf1ind 21431 deg1ldg 25162 deg1leb 25165 |
Copyright terms: Public domain | W3C validator |