| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapsnf1o2 | Structured version Visualization version GIF version | ||
| Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s | ⊢ 𝑆 = {𝑋} |
| mapsncnv.b | ⊢ 𝐵 ∈ V |
| mapsncnv.x | ⊢ 𝑋 ∈ V |
| mapsncnv.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) |
| Ref | Expression |
|---|---|
| mapsnf1o2 | ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6919 | . . 3 ⊢ (𝑥‘𝑋) ∈ V | |
| 2 | mapsncnv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) | |
| 3 | 1, 2 | fnmpti 6711 | . 2 ⊢ 𝐹 Fn (𝐵 ↑m 𝑆) |
| 4 | mapsncnv.s | . . . . 5 ⊢ 𝑆 = {𝑋} | |
| 5 | snex 5436 | . . . . 5 ⊢ {𝑋} ∈ V | |
| 6 | 4, 5 | eqeltri 2837 | . . . 4 ⊢ 𝑆 ∈ V |
| 7 | snex 5436 | . . . 4 ⊢ {𝑦} ∈ V | |
| 8 | 6, 7 | xpex 7773 | . . 3 ⊢ (𝑆 × {𝑦}) ∈ V |
| 9 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 10 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
| 11 | 4, 9, 10, 2 | mapsncnv 8933 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| 12 | 8, 11 | fnmpti 6711 | . 2 ⊢ ◡𝐹 Fn 𝐵 |
| 13 | dff1o4 6856 | . 2 ⊢ (𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 ↔ (𝐹 Fn (𝐵 ↑m 𝑆) ∧ ◡𝐹 Fn 𝐵)) | |
| 14 | 3, 12, 13 | mpbir2an 711 | 1 ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3480 {csn 4626 ↦ cmpt 5225 × cxp 5683 ◡ccnv 5684 Fn wfn 6556 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 |
| This theorem is referenced by: mapsnf1o3 8935 coe1sfi 22215 coe1mul2lem2 22271 ply1coe 22302 evl1var 22340 pf1mpf 22356 pf1ind 22359 deg1ldg 26131 deg1leb 26134 |
| Copyright terms: Public domain | W3C validator |