MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnf1o2 Structured version   Visualization version   GIF version

Theorem mapsnf1o2 8934
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
mapsncnv.f 𝐹 = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋))
Assertion
Ref Expression
mapsnf1o2 𝐹:(𝐵m 𝑆)–1-1-onto𝐵
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem mapsnf1o2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvex 6919 . . 3 (𝑥𝑋) ∈ V
2 mapsncnv.f . . 3 𝐹 = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋))
31, 2fnmpti 6711 . 2 𝐹 Fn (𝐵m 𝑆)
4 mapsncnv.s . . . . 5 𝑆 = {𝑋}
5 snex 5436 . . . . 5 {𝑋} ∈ V
64, 5eqeltri 2837 . . . 4 𝑆 ∈ V
7 snex 5436 . . . 4 {𝑦} ∈ V
86, 7xpex 7773 . . 3 (𝑆 × {𝑦}) ∈ V
9 mapsncnv.b . . . 4 𝐵 ∈ V
10 mapsncnv.x . . . 4 𝑋 ∈ V
114, 9, 10, 2mapsncnv 8933 . . 3 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
128, 11fnmpti 6711 . 2 𝐹 Fn 𝐵
13 dff1o4 6856 . 2 (𝐹:(𝐵m 𝑆)–1-1-onto𝐵 ↔ (𝐹 Fn (𝐵m 𝑆) ∧ 𝐹 Fn 𝐵))
143, 12, 13mpbir2an 711 1 𝐹:(𝐵m 𝑆)–1-1-onto𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3480  {csn 4626  cmpt 5225   × cxp 5683  ccnv 5684   Fn wfn 6556  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  m cmap 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868
This theorem is referenced by:  mapsnf1o3  8935  coe1sfi  22215  coe1mul2lem2  22271  ply1coe  22302  evl1var  22340  pf1mpf  22356  pf1ind  22359  deg1ldg  26131  deg1leb  26134
  Copyright terms: Public domain W3C validator