Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mapsnf1o2 | Structured version Visualization version GIF version |
Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
mapsncnv.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) |
Ref | Expression |
---|---|
mapsnf1o2 | ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6671 | . . 3 ⊢ (𝑥‘𝑋) ∈ V | |
2 | mapsncnv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) | |
3 | 1, 2 | fnmpti 6474 | . 2 ⊢ 𝐹 Fn (𝐵 ↑m 𝑆) |
4 | mapsncnv.s | . . . . 5 ⊢ 𝑆 = {𝑋} | |
5 | snex 5300 | . . . . 5 ⊢ {𝑋} ∈ V | |
6 | 4, 5 | eqeltri 2848 | . . . 4 ⊢ 𝑆 ∈ V |
7 | snex 5300 | . . . 4 ⊢ {𝑦} ∈ V | |
8 | 6, 7 | xpex 7474 | . . 3 ⊢ (𝑆 × {𝑦}) ∈ V |
9 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
10 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
11 | 4, 9, 10, 2 | mapsncnv 8475 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
12 | 8, 11 | fnmpti 6474 | . 2 ⊢ ◡𝐹 Fn 𝐵 |
13 | dff1o4 6610 | . 2 ⊢ (𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 ↔ (𝐹 Fn (𝐵 ↑m 𝑆) ∧ ◡𝐹 Fn 𝐵)) | |
14 | 3, 12, 13 | mpbir2an 710 | 1 ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 Vcvv 3409 {csn 4522 ↦ cmpt 5112 × cxp 5522 ◡ccnv 5523 Fn wfn 6330 –1-1-onto→wf1o 6334 ‘cfv 6335 (class class class)co 7150 ↑m cmap 8416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-map 8418 |
This theorem is referenced by: mapsnf1o3 8477 coe1sfi 20937 coe1mul2lem2 20992 ply1coe 21020 evl1var 21055 pf1mpf 21071 pf1ind 21074 deg1ldg 24792 deg1leb 24795 |
Copyright terms: Public domain | W3C validator |