| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapsnf1o2 | Structured version Visualization version GIF version | ||
| Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s | ⊢ 𝑆 = {𝑋} |
| mapsncnv.b | ⊢ 𝐵 ∈ V |
| mapsncnv.x | ⊢ 𝑋 ∈ V |
| mapsncnv.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) |
| Ref | Expression |
|---|---|
| mapsnf1o2 | ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6889 | . . 3 ⊢ (𝑥‘𝑋) ∈ V | |
| 2 | mapsncnv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) | |
| 3 | 1, 2 | fnmpti 6681 | . 2 ⊢ 𝐹 Fn (𝐵 ↑m 𝑆) |
| 4 | mapsncnv.s | . . . . 5 ⊢ 𝑆 = {𝑋} | |
| 5 | snex 5406 | . . . . 5 ⊢ {𝑋} ∈ V | |
| 6 | 4, 5 | eqeltri 2830 | . . . 4 ⊢ 𝑆 ∈ V |
| 7 | snex 5406 | . . . 4 ⊢ {𝑦} ∈ V | |
| 8 | 6, 7 | xpex 7747 | . . 3 ⊢ (𝑆 × {𝑦}) ∈ V |
| 9 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 10 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
| 11 | 4, 9, 10, 2 | mapsncnv 8907 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| 12 | 8, 11 | fnmpti 6681 | . 2 ⊢ ◡𝐹 Fn 𝐵 |
| 13 | dff1o4 6826 | . 2 ⊢ (𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 ↔ (𝐹 Fn (𝐵 ↑m 𝑆) ∧ ◡𝐹 Fn 𝐵)) | |
| 14 | 3, 12, 13 | mpbir2an 711 | 1 ⊢ 𝐹:(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 ↦ cmpt 5201 × cxp 5652 ◡ccnv 5653 Fn wfn 6526 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 |
| This theorem is referenced by: mapsnf1o3 8909 coe1sfi 22149 coe1mul2lem2 22205 ply1coe 22236 evl1var 22274 pf1mpf 22290 pf1ind 22293 deg1ldg 26049 deg1leb 26052 |
| Copyright terms: Public domain | W3C validator |