| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invf1o | Structured version Visualization version GIF version | ||
| Description: The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism 𝐹 ∈ (𝑋𝐼𝑌) has a unique inverse, denoted by ((Inv‘𝐶)‘𝐹). Remark 3.12 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| invf1o | ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invss.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | invss.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | isoval.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | invf 17730 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
| 8 | 7 | ffnd 6689 | . 2 ⊢ (𝜑 → (𝑋𝑁𝑌) Fn (𝑋𝐼𝑌)) |
| 9 | 1, 2, 3, 5, 4, 6 | invf 17730 | . . . 4 ⊢ (𝜑 → (𝑌𝑁𝑋):(𝑌𝐼𝑋)⟶(𝑋𝐼𝑌)) |
| 10 | 9 | ffnd 6689 | . . 3 ⊢ (𝜑 → (𝑌𝑁𝑋) Fn (𝑌𝐼𝑋)) |
| 11 | 1, 2, 3, 4, 5 | invsym2 17725 | . . . 4 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
| 12 | 11 | fneq1d 6611 | . . 3 ⊢ (𝜑 → (◡(𝑋𝑁𝑌) Fn (𝑌𝐼𝑋) ↔ (𝑌𝑁𝑋) Fn (𝑌𝐼𝑋))) |
| 13 | 10, 12 | mpbird 257 | . 2 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) Fn (𝑌𝐼𝑋)) |
| 14 | dff1o4 6808 | . 2 ⊢ ((𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋) ↔ ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ∧ ◡(𝑋𝑁𝑌) Fn (𝑌𝐼𝑋))) | |
| 15 | 8, 13, 14 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ◡ccnv 5637 Fn wfn 6506 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Catccat 17625 Invcinv 17707 Isociso 17708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-cat 17629 df-cid 17630 df-sect 17709 df-inv 17710 df-iso 17711 |
| This theorem is referenced by: invinv 17732 |
| Copyright terms: Public domain | W3C validator |