MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invf1o Structured version   Visualization version   GIF version

Theorem invf1o 17723
Description: The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism 𝐹 ∈ (π‘‹πΌπ‘Œ) has a unique inverse, denoted by ((Invβ€˜πΆ)β€˜πΉ). Remark 3.12 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐡 = (Baseβ€˜πΆ)
invfval.n 𝑁 = (Invβ€˜πΆ)
invfval.c (πœ‘ β†’ 𝐢 ∈ Cat)
invfval.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
invfval.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
isoval.n 𝐼 = (Isoβ€˜πΆ)
Assertion
Ref Expression
invf1o (πœ‘ β†’ (π‘‹π‘π‘Œ):(π‘‹πΌπ‘Œ)–1-1-ontoβ†’(π‘ŒπΌπ‘‹))

Proof of Theorem invf1o
StepHypRef Expression
1 invfval.b . . . 4 𝐡 = (Baseβ€˜πΆ)
2 invfval.n . . . 4 𝑁 = (Invβ€˜πΆ)
3 invfval.c . . . 4 (πœ‘ β†’ 𝐢 ∈ Cat)
4 invfval.x . . . 4 (πœ‘ β†’ 𝑋 ∈ 𝐡)
5 invfval.y . . . 4 (πœ‘ β†’ π‘Œ ∈ 𝐡)
6 isoval.n . . . 4 𝐼 = (Isoβ€˜πΆ)
71, 2, 3, 4, 5, 6invf 17722 . . 3 (πœ‘ β†’ (π‘‹π‘π‘Œ):(π‘‹πΌπ‘Œ)⟢(π‘ŒπΌπ‘‹))
87ffnd 6718 . 2 (πœ‘ β†’ (π‘‹π‘π‘Œ) Fn (π‘‹πΌπ‘Œ))
91, 2, 3, 5, 4, 6invf 17722 . . . 4 (πœ‘ β†’ (π‘Œπ‘π‘‹):(π‘ŒπΌπ‘‹)⟢(π‘‹πΌπ‘Œ))
109ffnd 6718 . . 3 (πœ‘ β†’ (π‘Œπ‘π‘‹) Fn (π‘ŒπΌπ‘‹))
111, 2, 3, 4, 5invsym2 17717 . . . 4 (πœ‘ β†’ β—‘(π‘‹π‘π‘Œ) = (π‘Œπ‘π‘‹))
1211fneq1d 6642 . . 3 (πœ‘ β†’ (β—‘(π‘‹π‘π‘Œ) Fn (π‘ŒπΌπ‘‹) ↔ (π‘Œπ‘π‘‹) Fn (π‘ŒπΌπ‘‹)))
1310, 12mpbird 257 . 2 (πœ‘ β†’ β—‘(π‘‹π‘π‘Œ) Fn (π‘ŒπΌπ‘‹))
14 dff1o4 6841 . 2 ((π‘‹π‘π‘Œ):(π‘‹πΌπ‘Œ)–1-1-ontoβ†’(π‘ŒπΌπ‘‹) ↔ ((π‘‹π‘π‘Œ) Fn (π‘‹πΌπ‘Œ) ∧ β—‘(π‘‹π‘π‘Œ) Fn (π‘ŒπΌπ‘‹)))
158, 13, 14sylanbrc 582 1 (πœ‘ β†’ (π‘‹π‘π‘Œ):(π‘‹πΌπ‘Œ)–1-1-ontoβ†’(π‘ŒπΌπ‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  β—‘ccnv 5675   Fn wfn 6538  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7412  Basecbs 17151  Catccat 17615  Invcinv 17699  Isociso 17700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-cat 17619  df-cid 17620  df-sect 17701  df-inv 17702  df-iso 17703
This theorem is referenced by:  invinv  17724
  Copyright terms: Public domain W3C validator