MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invf1o Structured version   Visualization version   GIF version

Theorem invf1o 17755
Description: The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism 𝐹 ∈ (𝑋𝐼𝑌) has a unique inverse, denoted by ((Inv‘𝐶)‘𝐹). Remark 3.12 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
invf1o (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋))

Proof of Theorem invf1o
StepHypRef Expression
1 invfval.b . . . 4 𝐵 = (Base‘𝐶)
2 invfval.n . . . 4 𝑁 = (Inv‘𝐶)
3 invfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . 4 (𝜑𝑋𝐵)
5 invfval.y . . . 4 (𝜑𝑌𝐵)
6 isoval.n . . . 4 𝐼 = (Iso‘𝐶)
71, 2, 3, 4, 5, 6invf 17754 . . 3 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
87ffnd 6724 . 2 (𝜑 → (𝑋𝑁𝑌) Fn (𝑋𝐼𝑌))
91, 2, 3, 5, 4, 6invf 17754 . . . 4 (𝜑 → (𝑌𝑁𝑋):(𝑌𝐼𝑋)⟶(𝑋𝐼𝑌))
109ffnd 6724 . . 3 (𝜑 → (𝑌𝑁𝑋) Fn (𝑌𝐼𝑋))
111, 2, 3, 4, 5invsym2 17749 . . . 4 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))
1211fneq1d 6648 . . 3 (𝜑 → ((𝑋𝑁𝑌) Fn (𝑌𝐼𝑋) ↔ (𝑌𝑁𝑋) Fn (𝑌𝐼𝑋)))
1310, 12mpbird 256 . 2 (𝜑(𝑋𝑁𝑌) Fn (𝑌𝐼𝑋))
14 dff1o4 6846 . 2 ((𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋) ↔ ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ∧ (𝑋𝑁𝑌) Fn (𝑌𝐼𝑋)))
158, 13, 14sylanbrc 581 1 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  ccnv 5677   Fn wfn 6544  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  Basecbs 17183  Catccat 17647  Invcinv 17731  Isociso 17732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-cat 17651  df-cid 17652  df-sect 17733  df-inv 17734  df-iso 17735
This theorem is referenced by:  invinv  17756
  Copyright terms: Public domain W3C validator