![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invf1o | Structured version Visualization version GIF version |
Description: The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism πΉ β (ππΌπ) has a unique inverse, denoted by ((InvβπΆ)βπΉ). Remark 3.12 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | β’ π΅ = (BaseβπΆ) |
invfval.n | β’ π = (InvβπΆ) |
invfval.c | β’ (π β πΆ β Cat) |
invfval.x | β’ (π β π β π΅) |
invfval.y | β’ (π β π β π΅) |
isoval.n | β’ πΌ = (IsoβπΆ) |
Ref | Expression |
---|---|
invf1o | β’ (π β (πππ):(ππΌπ)β1-1-ontoβ(ππΌπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . 4 β’ π΅ = (BaseβπΆ) | |
2 | invfval.n | . . . 4 β’ π = (InvβπΆ) | |
3 | invfval.c | . . . 4 β’ (π β πΆ β Cat) | |
4 | invfval.x | . . . 4 β’ (π β π β π΅) | |
5 | invfval.y | . . . 4 β’ (π β π β π΅) | |
6 | isoval.n | . . . 4 β’ πΌ = (IsoβπΆ) | |
7 | 1, 2, 3, 4, 5, 6 | invf 17722 | . . 3 β’ (π β (πππ):(ππΌπ)βΆ(ππΌπ)) |
8 | 7 | ffnd 6718 | . 2 β’ (π β (πππ) Fn (ππΌπ)) |
9 | 1, 2, 3, 5, 4, 6 | invf 17722 | . . . 4 β’ (π β (πππ):(ππΌπ)βΆ(ππΌπ)) |
10 | 9 | ffnd 6718 | . . 3 β’ (π β (πππ) Fn (ππΌπ)) |
11 | 1, 2, 3, 4, 5 | invsym2 17717 | . . . 4 β’ (π β β‘(πππ) = (πππ)) |
12 | 11 | fneq1d 6642 | . . 3 β’ (π β (β‘(πππ) Fn (ππΌπ) β (πππ) Fn (ππΌπ))) |
13 | 10, 12 | mpbird 257 | . 2 β’ (π β β‘(πππ) Fn (ππΌπ)) |
14 | dff1o4 6841 | . 2 β’ ((πππ):(ππΌπ)β1-1-ontoβ(ππΌπ) β ((πππ) Fn (ππΌπ) β§ β‘(πππ) Fn (ππΌπ))) | |
15 | 8, 13, 14 | sylanbrc 582 | 1 β’ (π β (πππ):(ππΌπ)β1-1-ontoβ(ππΌπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β‘ccnv 5675 Fn wfn 6538 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7412 Basecbs 17151 Catccat 17615 Invcinv 17699 Isociso 17700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-cat 17619 df-cid 17620 df-sect 17701 df-inv 17702 df-iso 17703 |
This theorem is referenced by: invinv 17724 |
Copyright terms: Public domain | W3C validator |