Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > invf1o | Structured version Visualization version GIF version |
Description: The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism 𝐹 ∈ (𝑋𝐼𝑌) has a unique inverse, denoted by ((Inv‘𝐶)‘𝐹). Remark 3.12 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
Ref | Expression |
---|---|
invf1o | ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invfval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | isoval.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
7 | 1, 2, 3, 4, 5, 6 | invf 17490 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
8 | 7 | ffnd 6593 | . 2 ⊢ (𝜑 → (𝑋𝑁𝑌) Fn (𝑋𝐼𝑌)) |
9 | 1, 2, 3, 5, 4, 6 | invf 17490 | . . . 4 ⊢ (𝜑 → (𝑌𝑁𝑋):(𝑌𝐼𝑋)⟶(𝑋𝐼𝑌)) |
10 | 9 | ffnd 6593 | . . 3 ⊢ (𝜑 → (𝑌𝑁𝑋) Fn (𝑌𝐼𝑋)) |
11 | 1, 2, 3, 4, 5 | invsym2 17485 | . . . 4 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
12 | 11 | fneq1d 6518 | . . 3 ⊢ (𝜑 → (◡(𝑋𝑁𝑌) Fn (𝑌𝐼𝑋) ↔ (𝑌𝑁𝑋) Fn (𝑌𝐼𝑋))) |
13 | 10, 12 | mpbird 256 | . 2 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) Fn (𝑌𝐼𝑋)) |
14 | dff1o4 6716 | . 2 ⊢ ((𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋) ↔ ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ∧ ◡(𝑋𝑁𝑌) Fn (𝑌𝐼𝑋))) | |
15 | 8, 13, 14 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ◡ccnv 5583 Fn wfn 6421 –1-1-onto→wf1o 6425 ‘cfv 6426 (class class class)co 7267 Basecbs 16922 Catccat 17383 Invcinv 17467 Isociso 17468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-1st 7820 df-2nd 7821 df-cat 17387 df-cid 17388 df-sect 17469 df-inv 17470 df-iso 17471 |
This theorem is referenced by: invinv 17492 |
Copyright terms: Public domain | W3C validator |