MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invf1o Structured version   Visualization version   GIF version

Theorem invf1o 17817
Description: The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism 𝐹 ∈ (𝑋𝐼𝑌) has a unique inverse, denoted by ((Inv‘𝐶)‘𝐹). Remark 3.12 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
invf1o (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋))

Proof of Theorem invf1o
StepHypRef Expression
1 invfval.b . . . 4 𝐵 = (Base‘𝐶)
2 invfval.n . . . 4 𝑁 = (Inv‘𝐶)
3 invfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . 4 (𝜑𝑋𝐵)
5 invfval.y . . . 4 (𝜑𝑌𝐵)
6 isoval.n . . . 4 𝐼 = (Iso‘𝐶)
71, 2, 3, 4, 5, 6invf 17816 . . 3 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
87ffnd 6738 . 2 (𝜑 → (𝑋𝑁𝑌) Fn (𝑋𝐼𝑌))
91, 2, 3, 5, 4, 6invf 17816 . . . 4 (𝜑 → (𝑌𝑁𝑋):(𝑌𝐼𝑋)⟶(𝑋𝐼𝑌))
109ffnd 6738 . . 3 (𝜑 → (𝑌𝑁𝑋) Fn (𝑌𝐼𝑋))
111, 2, 3, 4, 5invsym2 17811 . . . 4 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))
1211fneq1d 6662 . . 3 (𝜑 → ((𝑋𝑁𝑌) Fn (𝑌𝐼𝑋) ↔ (𝑌𝑁𝑋) Fn (𝑌𝐼𝑋)))
1310, 12mpbird 257 . 2 (𝜑(𝑋𝑁𝑌) Fn (𝑌𝐼𝑋))
14 dff1o4 6857 . 2 ((𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋) ↔ ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ∧ (𝑋𝑁𝑌) Fn (𝑌𝐼𝑋)))
158, 13, 14sylanbrc 583 1 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  ccnv 5688   Fn wfn 6558  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Basecbs 17245  Catccat 17709  Invcinv 17793  Isociso 17794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-cat 17713  df-cid 17714  df-sect 17795  df-inv 17796  df-iso 17797
This theorem is referenced by:  invinv  17818
  Copyright terms: Public domain W3C validator