| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invf1o | Structured version Visualization version GIF version | ||
| Description: The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism 𝐹 ∈ (𝑋𝐼𝑌) has a unique inverse, denoted by ((Inv‘𝐶)‘𝐹). Remark 3.12 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| invf1o | ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invss.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | invss.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | isoval.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | invf 17670 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
| 8 | 7 | ffnd 6647 | . 2 ⊢ (𝜑 → (𝑋𝑁𝑌) Fn (𝑋𝐼𝑌)) |
| 9 | 1, 2, 3, 5, 4, 6 | invf 17670 | . . . 4 ⊢ (𝜑 → (𝑌𝑁𝑋):(𝑌𝐼𝑋)⟶(𝑋𝐼𝑌)) |
| 10 | 9 | ffnd 6647 | . . 3 ⊢ (𝜑 → (𝑌𝑁𝑋) Fn (𝑌𝐼𝑋)) |
| 11 | 1, 2, 3, 4, 5 | invsym2 17665 | . . . 4 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
| 12 | 11 | fneq1d 6569 | . . 3 ⊢ (𝜑 → (◡(𝑋𝑁𝑌) Fn (𝑌𝐼𝑋) ↔ (𝑌𝑁𝑋) Fn (𝑌𝐼𝑋))) |
| 13 | 10, 12 | mpbird 257 | . 2 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) Fn (𝑌𝐼𝑋)) |
| 14 | dff1o4 6766 | . 2 ⊢ ((𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋) ↔ ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ∧ ◡(𝑋𝑁𝑌) Fn (𝑌𝐼𝑋))) | |
| 15 | 8, 13, 14 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ◡ccnv 5610 Fn wfn 6471 –1-1-onto→wf1o 6475 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Catccat 17565 Invcinv 17647 Isociso 17648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-cat 17569 df-cid 17570 df-sect 17649 df-inv 17650 df-iso 17651 |
| This theorem is referenced by: invinv 17672 |
| Copyright terms: Public domain | W3C validator |