Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovf1od Structured version   Visualization version   GIF version

Theorem fsovf1od 43222
Description: The value of (𝐴𝑂𝐵) is a bijection, where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets. (Contributed by RP, 27-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovfvd.g 𝐺 = (𝐴𝑂𝐵)
Assertion
Ref Expression
fsovf1od (𝜑𝐺:(𝒫 𝐵m 𝐴)–1-1-onto→(𝒫 𝐴m 𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑥,𝑦   𝐵,𝑎,𝑏,𝑓,𝑥,𝑦   𝜑,𝑎,𝑏,𝑓,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)

Proof of Theorem fsovf1od
StepHypRef Expression
1 fsovd.fs . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
2 fsovd.a . . . 4 (𝜑𝐴𝑉)
3 fsovd.b . . . 4 (𝜑𝐵𝑊)
4 fsovfvd.g . . . 4 𝐺 = (𝐴𝑂𝐵)
51, 2, 3, 4fsovfd 43218 . . 3 (𝜑𝐺:(𝒫 𝐵m 𝐴)⟶(𝒫 𝐴m 𝐵))
65ffnd 6708 . 2 (𝜑𝐺 Fn (𝒫 𝐵m 𝐴))
7 eqid 2724 . . . . 5 (𝐵𝑂𝐴) = (𝐵𝑂𝐴)
81, 3, 2, 7fsovfd 43218 . . . 4 (𝜑 → (𝐵𝑂𝐴):(𝒫 𝐴m 𝐵)⟶(𝒫 𝐵m 𝐴))
98ffnd 6708 . . 3 (𝜑 → (𝐵𝑂𝐴) Fn (𝒫 𝐴m 𝐵))
101, 2, 3, 4, 7fsovcnvd 43220 . . . 4 (𝜑𝐺 = (𝐵𝑂𝐴))
1110fneq1d 6632 . . 3 (𝜑 → (𝐺 Fn (𝒫 𝐴m 𝐵) ↔ (𝐵𝑂𝐴) Fn (𝒫 𝐴m 𝐵)))
129, 11mpbird 257 . 2 (𝜑𝐺 Fn (𝒫 𝐴m 𝐵))
13 dff1o4 6831 . 2 (𝐺:(𝒫 𝐵m 𝐴)–1-1-onto→(𝒫 𝐴m 𝐵) ↔ (𝐺 Fn (𝒫 𝐵m 𝐴) ∧ 𝐺 Fn (𝒫 𝐴m 𝐵)))
146, 12, 13sylanbrc 582 1 (𝜑𝐺:(𝒫 𝐵m 𝐴)–1-1-onto→(𝒫 𝐴m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {crab 3424  Vcvv 3466  𝒫 cpw 4594  cmpt 5221  ccnv 5665   Fn wfn 6528  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  cmpo 7403  m cmap 8815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-map 8817
This theorem is referenced by:  ntrneif1o  43281  clsneif1o  43310  clsneikex  43312  clsneinex  43313  neicvgf1o  43320  neicvgmex  43323  neicvgel1  43325
  Copyright terms: Public domain W3C validator