![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovf1od | Structured version Visualization version GIF version |
Description: The value of (𝐴𝑂𝐵) is a bijection, where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets. (Contributed by RP, 27-Apr-2021.) |
Ref | Expression |
---|---|
fsovd.fs | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
fsovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fsovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
fsovfvd.g | ⊢ 𝐺 = (𝐴𝑂𝐵) |
Ref | Expression |
---|---|
fsovf1od | ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→(𝒫 𝐴 ↑m 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsovd.fs | . . . 4 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) | |
2 | fsovd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | fsovd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | fsovfvd.g | . . . 4 ⊢ 𝐺 = (𝐴𝑂𝐵) | |
5 | 1, 2, 3, 4 | fsovfd 43218 | . . 3 ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)⟶(𝒫 𝐴 ↑m 𝐵)) |
6 | 5 | ffnd 6708 | . 2 ⊢ (𝜑 → 𝐺 Fn (𝒫 𝐵 ↑m 𝐴)) |
7 | eqid 2724 | . . . . 5 ⊢ (𝐵𝑂𝐴) = (𝐵𝑂𝐴) | |
8 | 1, 3, 2, 7 | fsovfd 43218 | . . . 4 ⊢ (𝜑 → (𝐵𝑂𝐴):(𝒫 𝐴 ↑m 𝐵)⟶(𝒫 𝐵 ↑m 𝐴)) |
9 | 8 | ffnd 6708 | . . 3 ⊢ (𝜑 → (𝐵𝑂𝐴) Fn (𝒫 𝐴 ↑m 𝐵)) |
10 | 1, 2, 3, 4, 7 | fsovcnvd 43220 | . . . 4 ⊢ (𝜑 → ◡𝐺 = (𝐵𝑂𝐴)) |
11 | 10 | fneq1d 6632 | . . 3 ⊢ (𝜑 → (◡𝐺 Fn (𝒫 𝐴 ↑m 𝐵) ↔ (𝐵𝑂𝐴) Fn (𝒫 𝐴 ↑m 𝐵))) |
12 | 9, 11 | mpbird 257 | . 2 ⊢ (𝜑 → ◡𝐺 Fn (𝒫 𝐴 ↑m 𝐵)) |
13 | dff1o4 6831 | . 2 ⊢ (𝐺:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→(𝒫 𝐴 ↑m 𝐵) ↔ (𝐺 Fn (𝒫 𝐵 ↑m 𝐴) ∧ ◡𝐺 Fn (𝒫 𝐴 ↑m 𝐵))) | |
14 | 6, 12, 13 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→(𝒫 𝐴 ↑m 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3424 Vcvv 3466 𝒫 cpw 4594 ↦ cmpt 5221 ◡ccnv 5665 Fn wfn 6528 –1-1-onto→wf1o 6532 ‘cfv 6533 (class class class)co 7401 ∈ cmpo 7403 ↑m cmap 8815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-map 8817 |
This theorem is referenced by: ntrneif1o 43281 clsneif1o 43310 clsneikex 43312 clsneinex 43313 neicvgf1o 43320 neicvgmex 43323 neicvgel1 43325 |
Copyright terms: Public domain | W3C validator |