| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovf1od | Structured version Visualization version GIF version | ||
| Description: The value of (𝐴𝑂𝐵) is a bijection, where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets. (Contributed by RP, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| fsovd.fs | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| fsovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fsovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| fsovfvd.g | ⊢ 𝐺 = (𝐴𝑂𝐵) |
| Ref | Expression |
|---|---|
| fsovf1od | ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→(𝒫 𝐴 ↑m 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsovd.fs | . . . 4 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) | |
| 2 | fsovd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | fsovd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | fsovfvd.g | . . . 4 ⊢ 𝐺 = (𝐴𝑂𝐵) | |
| 5 | 1, 2, 3, 4 | fsovfd 44110 | . . 3 ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)⟶(𝒫 𝐴 ↑m 𝐵)) |
| 6 | 5 | ffnd 6658 | . 2 ⊢ (𝜑 → 𝐺 Fn (𝒫 𝐵 ↑m 𝐴)) |
| 7 | eqid 2731 | . . . . 5 ⊢ (𝐵𝑂𝐴) = (𝐵𝑂𝐴) | |
| 8 | 1, 3, 2, 7 | fsovfd 44110 | . . . 4 ⊢ (𝜑 → (𝐵𝑂𝐴):(𝒫 𝐴 ↑m 𝐵)⟶(𝒫 𝐵 ↑m 𝐴)) |
| 9 | 8 | ffnd 6658 | . . 3 ⊢ (𝜑 → (𝐵𝑂𝐴) Fn (𝒫 𝐴 ↑m 𝐵)) |
| 10 | 1, 2, 3, 4, 7 | fsovcnvd 44112 | . . . 4 ⊢ (𝜑 → ◡𝐺 = (𝐵𝑂𝐴)) |
| 11 | 10 | fneq1d 6580 | . . 3 ⊢ (𝜑 → (◡𝐺 Fn (𝒫 𝐴 ↑m 𝐵) ↔ (𝐵𝑂𝐴) Fn (𝒫 𝐴 ↑m 𝐵))) |
| 12 | 9, 11 | mpbird 257 | . 2 ⊢ (𝜑 → ◡𝐺 Fn (𝒫 𝐴 ↑m 𝐵)) |
| 13 | dff1o4 6777 | . 2 ⊢ (𝐺:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→(𝒫 𝐴 ↑m 𝐵) ↔ (𝐺 Fn (𝒫 𝐵 ↑m 𝐴) ∧ ◡𝐺 Fn (𝒫 𝐴 ↑m 𝐵))) | |
| 14 | 6, 12, 13 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→(𝒫 𝐴 ↑m 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 𝒫 cpw 4549 ↦ cmpt 5174 ◡ccnv 5618 Fn wfn 6482 –1-1-onto→wf1o 6486 ‘cfv 6487 (class class class)co 7352 ∈ cmpo 7354 ↑m cmap 8756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 |
| This theorem is referenced by: ntrneif1o 44173 clsneif1o 44202 clsneikex 44204 clsneinex 44205 neicvgf1o 44212 neicvgmex 44215 neicvgel1 44217 |
| Copyright terms: Public domain | W3C validator |