Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovf1od Structured version   Visualization version   GIF version

Theorem fsovf1od 43998
Description: The value of (𝐴𝑂𝐵) is a bijection, where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets. (Contributed by RP, 27-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovfvd.g 𝐺 = (𝐴𝑂𝐵)
Assertion
Ref Expression
fsovf1od (𝜑𝐺:(𝒫 𝐵m 𝐴)–1-1-onto→(𝒫 𝐴m 𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑥,𝑦   𝐵,𝑎,𝑏,𝑓,𝑥,𝑦   𝜑,𝑎,𝑏,𝑓,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)

Proof of Theorem fsovf1od
StepHypRef Expression
1 fsovd.fs . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
2 fsovd.a . . . 4 (𝜑𝐴𝑉)
3 fsovd.b . . . 4 (𝜑𝐵𝑊)
4 fsovfvd.g . . . 4 𝐺 = (𝐴𝑂𝐵)
51, 2, 3, 4fsovfd 43994 . . 3 (𝜑𝐺:(𝒫 𝐵m 𝐴)⟶(𝒫 𝐴m 𝐵))
65ffnd 6691 . 2 (𝜑𝐺 Fn (𝒫 𝐵m 𝐴))
7 eqid 2730 . . . . 5 (𝐵𝑂𝐴) = (𝐵𝑂𝐴)
81, 3, 2, 7fsovfd 43994 . . . 4 (𝜑 → (𝐵𝑂𝐴):(𝒫 𝐴m 𝐵)⟶(𝒫 𝐵m 𝐴))
98ffnd 6691 . . 3 (𝜑 → (𝐵𝑂𝐴) Fn (𝒫 𝐴m 𝐵))
101, 2, 3, 4, 7fsovcnvd 43996 . . . 4 (𝜑𝐺 = (𝐵𝑂𝐴))
1110fneq1d 6613 . . 3 (𝜑 → (𝐺 Fn (𝒫 𝐴m 𝐵) ↔ (𝐵𝑂𝐴) Fn (𝒫 𝐴m 𝐵)))
129, 11mpbird 257 . 2 (𝜑𝐺 Fn (𝒫 𝐴m 𝐵))
13 dff1o4 6810 . 2 (𝐺:(𝒫 𝐵m 𝐴)–1-1-onto→(𝒫 𝐴m 𝐵) ↔ (𝐺 Fn (𝒫 𝐵m 𝐴) ∧ 𝐺 Fn (𝒫 𝐴m 𝐵)))
146, 12, 13sylanbrc 583 1 (𝜑𝐺:(𝒫 𝐵m 𝐴)–1-1-onto→(𝒫 𝐴m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  𝒫 cpw 4565  cmpt 5190  ccnv 5639   Fn wfn 6508  1-1-ontowf1o 6512  cfv 6513  (class class class)co 7389  cmpo 7391  m cmap 8801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803
This theorem is referenced by:  ntrneif1o  44057  clsneif1o  44086  clsneikex  44088  clsneinex  44089  neicvgf1o  44096  neicvgmex  44099  neicvgel1  44101
  Copyright terms: Public domain W3C validator