Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovf1od | Structured version Visualization version GIF version |
Description: The value of (𝐴𝑂𝐵) is a bijection, where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets. (Contributed by RP, 27-Apr-2021.) |
Ref | Expression |
---|---|
fsovd.fs | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
fsovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fsovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
fsovfvd.g | ⊢ 𝐺 = (𝐴𝑂𝐵) |
Ref | Expression |
---|---|
fsovf1od | ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→(𝒫 𝐴 ↑m 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsovd.fs | . . . 4 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) | |
2 | fsovd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | fsovd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | fsovfvd.g | . . . 4 ⊢ 𝐺 = (𝐴𝑂𝐵) | |
5 | 1, 2, 3, 4 | fsovfd 41121 | . . 3 ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)⟶(𝒫 𝐴 ↑m 𝐵)) |
6 | 5 | ffnd 6504 | . 2 ⊢ (𝜑 → 𝐺 Fn (𝒫 𝐵 ↑m 𝐴)) |
7 | eqid 2758 | . . . . 5 ⊢ (𝐵𝑂𝐴) = (𝐵𝑂𝐴) | |
8 | 1, 3, 2, 7 | fsovfd 41121 | . . . 4 ⊢ (𝜑 → (𝐵𝑂𝐴):(𝒫 𝐴 ↑m 𝐵)⟶(𝒫 𝐵 ↑m 𝐴)) |
9 | 8 | ffnd 6504 | . . 3 ⊢ (𝜑 → (𝐵𝑂𝐴) Fn (𝒫 𝐴 ↑m 𝐵)) |
10 | 1, 2, 3, 4, 7 | fsovcnvd 41123 | . . . 4 ⊢ (𝜑 → ◡𝐺 = (𝐵𝑂𝐴)) |
11 | 10 | fneq1d 6432 | . . 3 ⊢ (𝜑 → (◡𝐺 Fn (𝒫 𝐴 ↑m 𝐵) ↔ (𝐵𝑂𝐴) Fn (𝒫 𝐴 ↑m 𝐵))) |
12 | 9, 11 | mpbird 260 | . 2 ⊢ (𝜑 → ◡𝐺 Fn (𝒫 𝐴 ↑m 𝐵)) |
13 | dff1o4 6615 | . 2 ⊢ (𝐺:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→(𝒫 𝐴 ↑m 𝐵) ↔ (𝐺 Fn (𝒫 𝐵 ↑m 𝐴) ∧ ◡𝐺 Fn (𝒫 𝐴 ↑m 𝐵))) | |
14 | 6, 12, 13 | sylanbrc 586 | 1 ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→(𝒫 𝐴 ↑m 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 {crab 3074 Vcvv 3409 𝒫 cpw 4497 ↦ cmpt 5116 ◡ccnv 5527 Fn wfn 6335 –1-1-onto→wf1o 6339 ‘cfv 6340 (class class class)co 7156 ∈ cmpo 7158 ↑m cmap 8422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-map 8424 |
This theorem is referenced by: ntrneif1o 41186 clsneif1o 41215 clsneikex 41217 clsneinex 41218 neicvgf1o 41225 neicvgmex 41228 neicvgel1 41230 |
Copyright terms: Public domain | W3C validator |