| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovf1od | Structured version Visualization version GIF version | ||
| Description: The value of (𝐴𝑂𝐵) is a bijection, where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets. (Contributed by RP, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| fsovd.fs | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| fsovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fsovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| fsovfvd.g | ⊢ 𝐺 = (𝐴𝑂𝐵) |
| Ref | Expression |
|---|---|
| fsovf1od | ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→(𝒫 𝐴 ↑m 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsovd.fs | . . . 4 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) | |
| 2 | fsovd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | fsovd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | fsovfvd.g | . . . 4 ⊢ 𝐺 = (𝐴𝑂𝐵) | |
| 5 | 1, 2, 3, 4 | fsovfd 44030 | . . 3 ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)⟶(𝒫 𝐴 ↑m 𝐵)) |
| 6 | 5 | ffnd 6736 | . 2 ⊢ (𝜑 → 𝐺 Fn (𝒫 𝐵 ↑m 𝐴)) |
| 7 | eqid 2736 | . . . . 5 ⊢ (𝐵𝑂𝐴) = (𝐵𝑂𝐴) | |
| 8 | 1, 3, 2, 7 | fsovfd 44030 | . . . 4 ⊢ (𝜑 → (𝐵𝑂𝐴):(𝒫 𝐴 ↑m 𝐵)⟶(𝒫 𝐵 ↑m 𝐴)) |
| 9 | 8 | ffnd 6736 | . . 3 ⊢ (𝜑 → (𝐵𝑂𝐴) Fn (𝒫 𝐴 ↑m 𝐵)) |
| 10 | 1, 2, 3, 4, 7 | fsovcnvd 44032 | . . . 4 ⊢ (𝜑 → ◡𝐺 = (𝐵𝑂𝐴)) |
| 11 | 10 | fneq1d 6660 | . . 3 ⊢ (𝜑 → (◡𝐺 Fn (𝒫 𝐴 ↑m 𝐵) ↔ (𝐵𝑂𝐴) Fn (𝒫 𝐴 ↑m 𝐵))) |
| 12 | 9, 11 | mpbird 257 | . 2 ⊢ (𝜑 → ◡𝐺 Fn (𝒫 𝐴 ↑m 𝐵)) |
| 13 | dff1o4 6855 | . 2 ⊢ (𝐺:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→(𝒫 𝐴 ↑m 𝐵) ↔ (𝐺 Fn (𝒫 𝐵 ↑m 𝐴) ∧ ◡𝐺 Fn (𝒫 𝐴 ↑m 𝐵))) | |
| 14 | 6, 12, 13 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→(𝒫 𝐴 ↑m 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3435 Vcvv 3479 𝒫 cpw 4599 ↦ cmpt 5224 ◡ccnv 5683 Fn wfn 6555 –1-1-onto→wf1o 6559 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 ↑m cmap 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-map 8869 |
| This theorem is referenced by: ntrneif1o 44093 clsneif1o 44122 clsneikex 44124 clsneinex 44125 neicvgf1o 44132 neicvgmex 44135 neicvgel1 44137 |
| Copyright terms: Public domain | W3C validator |