MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmf1o Structured version   Visualization version   GIF version

Theorem rhmf1o 20411
Description: A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.)
Hypotheses
Ref Expression
rhmf1o.b 𝐵 = (Base‘𝑅)
rhmf1o.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
rhmf1o (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RingHom 𝑅)))

Proof of Theorem rhmf1o
StepHypRef Expression
1 rhmrcl2 20397 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
2 rhmrcl1 20396 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
31, 2jca 511 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring))
43adantr 480 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring))
5 simpr 484 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐵1-1-onto𝐶)
6 rhmghm 20404 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
76adantr 480 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
8 rhmf1o.b . . . . . . . 8 𝐵 = (Base‘𝑅)
9 rhmf1o.c . . . . . . . 8 𝐶 = (Base‘𝑆)
108, 9ghmf1o 19162 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 GrpHom 𝑅)))
1110bicomd 223 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵1-1-onto𝐶))
127, 11syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵1-1-onto𝐶))
135, 12mpbird 257 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 GrpHom 𝑅))
14 eqidd 2730 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 = 𝐹)
15 eqid 2729 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1615, 8mgpbas 20065 . . . . . . . 8 𝐵 = (Base‘(mulGrp‘𝑅))
1716a1i 11 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐵 = (Base‘(mulGrp‘𝑅)))
18 eqid 2729 . . . . . . . . 9 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1918, 9mgpbas 20065 . . . . . . . 8 𝐶 = (Base‘(mulGrp‘𝑆))
2019a1i 11 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐶 = (Base‘(mulGrp‘𝑆)))
2114, 17, 20f1oeq123d 6776 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2221biimpa 476 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))
2315, 18rhmmhm 20399 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
2423adantr 480 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
25 eqid 2729 . . . . . . . 8 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
26 eqid 2729 . . . . . . . 8 (Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆))
2725, 26mhmf1o 18705 . . . . . . 7 (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) → (𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅))))
2827bicomd 223 . . . . . 6 (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2924, 28syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
3022, 29mpbird 257 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)))
3113, 30jca 511 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅))))
3218, 15isrhm 20398 . . 3 (𝐹 ∈ (𝑆 RingHom 𝑅) ↔ ((𝑆 ∈ Ring ∧ 𝑅 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)))))
334, 31, 32sylanbrc 583 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 RingHom 𝑅))
348, 9rhmf 20405 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵𝐶)
3534adantr 480 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹:𝐵𝐶)
3635ffnd 6671 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹 Fn 𝐵)
379, 8rhmf 20405 . . . . 5 (𝐹 ∈ (𝑆 RingHom 𝑅) → 𝐹:𝐶𝐵)
3837adantl 481 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹:𝐶𝐵)
3938ffnd 6671 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹 Fn 𝐶)
40 dff1o4 6790 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹 Fn 𝐵𝐹 Fn 𝐶))
4136, 39, 40sylanbrc 583 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹:𝐵1-1-onto𝐶)
4233, 41impbida 800 1 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RingHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ccnv 5630   Fn wfn 6494  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  Basecbs 17155   MndHom cmhm 18690   GrpHom cghm 19126  mulGrpcmgp 20060  Ringcrg 20153   RingHom crh 20389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-grp 18850  df-ghm 19127  df-mgp 20061  df-ur 20102  df-ring 20155  df-rhm 20392
This theorem is referenced by:  isrim  20412  isrimOLD  20413
  Copyright terms: Public domain W3C validator