Proof of Theorem rhmf1o
Step | Hyp | Ref
| Expression |
1 | | rhmrcl2 19556 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
2 | | rhmrcl1 19555 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
3 | 1, 2 | jca 515 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring)) |
4 | 3 | adantr 484 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring)) |
5 | | simpr 488 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹:𝐵–1-1-onto→𝐶) |
6 | | rhmghm 19561 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
7 | 6 | adantr 484 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
8 | | rhmf1o.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
9 | | rhmf1o.c |
. . . . . . . 8
⊢ 𝐶 = (Base‘𝑆) |
10 | 8, 9 | ghmf1o 18468 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 GrpHom 𝑅))) |
11 | 10 | bicomd 226 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
12 | 7, 11 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
13 | 5, 12 | mpbird 260 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹 ∈ (𝑆 GrpHom 𝑅)) |
14 | | eqidd 2759 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 = 𝐹) |
15 | | eqid 2758 |
. . . . . . . . 9
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
16 | 15, 8 | mgpbas 19326 |
. . . . . . . 8
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
17 | 16 | a1i 11 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐵 = (Base‘(mulGrp‘𝑅))) |
18 | | eqid 2758 |
. . . . . . . . 9
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
19 | 18, 9 | mgpbas 19326 |
. . . . . . . 8
⊢ 𝐶 =
(Base‘(mulGrp‘𝑆)) |
20 | 19 | a1i 11 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐶 = (Base‘(mulGrp‘𝑆))) |
21 | 14, 17, 20 | f1oeq123d 6601 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))) |
22 | 21 | biimpa 480 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))) |
23 | 15, 18 | rhmmhm 19558 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
24 | 23 | adantr 484 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
25 | | eqid 2758 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) |
26 | | eqid 2758 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆)) |
27 | 25, 26 | mhmf1o 18045 |
. . . . . . 7
⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) → (𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)) ↔ ◡𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)))) |
28 | 27 | bicomd 226 |
. . . . . 6
⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) → (◡𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))) |
29 | 24, 28 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))) |
30 | 22, 29 | mpbird 260 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅))) |
31 | 13, 30 | jca 515 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ ◡𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)))) |
32 | 18, 15 | isrhm 19557 |
. . 3
⊢ (◡𝐹 ∈ (𝑆 RingHom 𝑅) ↔ ((𝑆 ∈ Ring ∧ 𝑅 ∈ Ring) ∧ (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ ◡𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅))))) |
33 | 4, 31, 32 | sylanbrc 586 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹 ∈ (𝑆 RingHom 𝑅)) |
34 | 8, 9 | rhmf 19562 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵⟶𝐶) |
35 | 34 | adantr 484 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹:𝐵⟶𝐶) |
36 | 35 | ffnd 6504 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹 Fn 𝐵) |
37 | 9, 8 | rhmf 19562 |
. . . . 5
⊢ (◡𝐹 ∈ (𝑆 RingHom 𝑅) → ◡𝐹:𝐶⟶𝐵) |
38 | 37 | adantl 485 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → ◡𝐹:𝐶⟶𝐵) |
39 | 38 | ffnd 6504 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → ◡𝐹 Fn 𝐶) |
40 | | dff1o4 6615 |
. . 3
⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹 Fn 𝐵 ∧ ◡𝐹 Fn 𝐶)) |
41 | 36, 39, 40 | sylanbrc 586 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹:𝐵–1-1-onto→𝐶) |
42 | 33, 41 | impbida 800 |
1
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |