MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmf1o Structured version   Visualization version   GIF version

Theorem rhmf1o 20517
Description: A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.)
Hypotheses
Ref Expression
rhmf1o.b 𝐵 = (Base‘𝑅)
rhmf1o.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
rhmf1o (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RingHom 𝑅)))

Proof of Theorem rhmf1o
StepHypRef Expression
1 rhmrcl2 20503 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
2 rhmrcl1 20502 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
31, 2jca 511 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring))
43adantr 480 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring))
5 simpr 484 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐵1-1-onto𝐶)
6 rhmghm 20510 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
76adantr 480 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
8 rhmf1o.b . . . . . . . 8 𝐵 = (Base‘𝑅)
9 rhmf1o.c . . . . . . . 8 𝐶 = (Base‘𝑆)
108, 9ghmf1o 19288 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 GrpHom 𝑅)))
1110bicomd 223 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵1-1-onto𝐶))
127, 11syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵1-1-onto𝐶))
135, 12mpbird 257 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 GrpHom 𝑅))
14 eqidd 2741 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 = 𝐹)
15 eqid 2740 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1615, 8mgpbas 20167 . . . . . . . 8 𝐵 = (Base‘(mulGrp‘𝑅))
1716a1i 11 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐵 = (Base‘(mulGrp‘𝑅)))
18 eqid 2740 . . . . . . . . 9 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1918, 9mgpbas 20167 . . . . . . . 8 𝐶 = (Base‘(mulGrp‘𝑆))
2019a1i 11 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐶 = (Base‘(mulGrp‘𝑆)))
2114, 17, 20f1oeq123d 6856 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2221biimpa 476 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))
2315, 18rhmmhm 20505 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
2423adantr 480 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
25 eqid 2740 . . . . . . . 8 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
26 eqid 2740 . . . . . . . 8 (Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆))
2725, 26mhmf1o 18831 . . . . . . 7 (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) → (𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅))))
2827bicomd 223 . . . . . 6 (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2924, 28syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
3022, 29mpbird 257 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)))
3113, 30jca 511 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅))))
3218, 15isrhm 20504 . . 3 (𝐹 ∈ (𝑆 RingHom 𝑅) ↔ ((𝑆 ∈ Ring ∧ 𝑅 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑅)))))
334, 31, 32sylanbrc 582 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 RingHom 𝑅))
348, 9rhmf 20511 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵𝐶)
3534adantr 480 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹:𝐵𝐶)
3635ffnd 6748 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹 Fn 𝐵)
379, 8rhmf 20511 . . . . 5 (𝐹 ∈ (𝑆 RingHom 𝑅) → 𝐹:𝐶𝐵)
3837adantl 481 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹:𝐶𝐵)
3938ffnd 6748 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹 Fn 𝐶)
40 dff1o4 6870 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹 Fn 𝐵𝐹 Fn 𝐶))
4136, 39, 40sylanbrc 582 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → 𝐹:𝐵1-1-onto𝐶)
4233, 41impbida 800 1 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RingHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  ccnv 5699   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Basecbs 17258   MndHom cmhm 18816   GrpHom cghm 19252  mulGrpcmgp 20161  Ringcrg 20260   RingHom crh 20495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-ghm 19253  df-mgp 20162  df-ur 20209  df-ring 20262  df-rhm 20498
This theorem is referenced by:  isrim  20518  isrimOLD  20519
  Copyright terms: Public domain W3C validator