MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf1o Structured version   Visualization version   GIF version

Theorem ghmf1o 18779
Description: A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
ghmf1o.x 𝑋 = (Base‘𝑆)
ghmf1o.y 𝑌 = (Base‘𝑇)
Assertion
Ref Expression
ghmf1o (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))

Proof of Theorem ghmf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp2 18752 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
2 ghmgrp1 18751 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
31, 2jca 511 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑇 ∈ Grp ∧ 𝑆 ∈ Grp))
43adantr 480 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑇 ∈ Grp ∧ 𝑆 ∈ Grp))
5 f1ocnv 6712 . . . . . 6 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
65adantl 481 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹:𝑌1-1-onto𝑋)
7 f1of 6700 . . . . 5 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
86, 7syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹:𝑌𝑋)
9 simpll 763 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
108adantr 480 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹:𝑌𝑋)
11 simprl 767 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑥𝑌)
1210, 11ffvelrnd 6944 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹𝑥) ∈ 𝑋)
13 simprr 769 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑦𝑌)
1410, 13ffvelrnd 6944 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹𝑦) ∈ 𝑋)
15 ghmf1o.x . . . . . . . . 9 𝑋 = (Base‘𝑆)
16 eqid 2738 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
17 eqid 2738 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
1815, 16, 17ghmlin 18754 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))))
199, 12, 14, 18syl3anc 1369 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))))
20 simplr 765 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹:𝑋1-1-onto𝑌)
21 f1ocnvfv2 7130 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
2220, 11, 21syl2anc 583 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝐹𝑥)) = 𝑥)
23 f1ocnvfv2 7130 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝑦𝑌) → (𝐹‘(𝐹𝑦)) = 𝑦)
2420, 13, 23syl2anc 583 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2522, 24oveq12d 7273 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))) = (𝑥(+g𝑇)𝑦))
2619, 25eqtrd 2778 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦))
279, 2syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑆 ∈ Grp)
2815, 16grpcl 18500 . . . . . . . 8 ((𝑆 ∈ Grp ∧ (𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋) → ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋)
2927, 12, 14, 28syl3anc 1369 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋)
30 f1ocnvfv 7131 . . . . . . 7 ((𝐹:𝑋1-1-onto𝑌 ∧ ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋) → ((𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
3120, 29, 30syl2anc 583 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
3226, 31mpd 15 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
3332ralrimivva 3114 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
348, 33jca 511 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
35 ghmf1o.y . . . 4 𝑌 = (Base‘𝑇)
3635, 15, 17, 16isghm 18749 . . 3 (𝐹 ∈ (𝑇 GrpHom 𝑆) ↔ ((𝑇 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
374, 34, 36sylanbrc 582 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹 ∈ (𝑇 GrpHom 𝑆))
3815, 35ghmf 18753 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)
3938adantr 480 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑋𝑌)
4039ffnd 6585 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹 Fn 𝑋)
4135, 15ghmf 18753 . . . . 5 (𝐹 ∈ (𝑇 GrpHom 𝑆) → 𝐹:𝑌𝑋)
4241adantl 481 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑌𝑋)
4342ffnd 6585 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹 Fn 𝑌)
44 dff1o4 6708 . . 3 (𝐹:𝑋1-1-onto𝑌 ↔ (𝐹 Fn 𝑋𝐹 Fn 𝑌))
4540, 43, 44sylanbrc 582 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑋1-1-onto𝑌)
4637, 45impbida 797 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  ccnv 5579   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492   GrpHom cghm 18746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ghm 18747
This theorem is referenced by:  isgim2  18796  rhmf1o  19891  lmhmf1o  20223  rnghmf1o  45349
  Copyright terms: Public domain W3C validator