MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf1o Structured version   Visualization version   GIF version

Theorem ghmf1o 19038
Description: A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
ghmf1o.x 𝑋 = (Base‘𝑆)
ghmf1o.y 𝑌 = (Base‘𝑇)
Assertion
Ref Expression
ghmf1o (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))

Proof of Theorem ghmf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp2 19011 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
2 ghmgrp1 19010 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
31, 2jca 512 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑇 ∈ Grp ∧ 𝑆 ∈ Grp))
43adantr 481 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑇 ∈ Grp ∧ 𝑆 ∈ Grp))
5 f1ocnv 6796 . . . . . 6 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
65adantl 482 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹:𝑌1-1-onto𝑋)
7 f1of 6784 . . . . 5 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
86, 7syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹:𝑌𝑋)
9 simpll 765 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
108adantr 481 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹:𝑌𝑋)
11 simprl 769 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑥𝑌)
1210, 11ffvelcdmd 7036 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹𝑥) ∈ 𝑋)
13 simprr 771 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑦𝑌)
1410, 13ffvelcdmd 7036 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹𝑦) ∈ 𝑋)
15 ghmf1o.x . . . . . . . . 9 𝑋 = (Base‘𝑆)
16 eqid 2736 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
17 eqid 2736 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
1815, 16, 17ghmlin 19013 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))))
199, 12, 14, 18syl3anc 1371 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))))
20 simplr 767 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹:𝑋1-1-onto𝑌)
21 f1ocnvfv2 7223 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
2220, 11, 21syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝐹𝑥)) = 𝑥)
23 f1ocnvfv2 7223 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝑦𝑌) → (𝐹‘(𝐹𝑦)) = 𝑦)
2420, 13, 23syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2522, 24oveq12d 7375 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))) = (𝑥(+g𝑇)𝑦))
2619, 25eqtrd 2776 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦))
279, 2syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑆 ∈ Grp)
2815, 16grpcl 18756 . . . . . . . 8 ((𝑆 ∈ Grp ∧ (𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋) → ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋)
2927, 12, 14, 28syl3anc 1371 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋)
30 f1ocnvfv 7224 . . . . . . 7 ((𝐹:𝑋1-1-onto𝑌 ∧ ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋) → ((𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
3120, 29, 30syl2anc 584 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
3226, 31mpd 15 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
3332ralrimivva 3197 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
348, 33jca 512 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
35 ghmf1o.y . . . 4 𝑌 = (Base‘𝑇)
3635, 15, 17, 16isghm 19008 . . 3 (𝐹 ∈ (𝑇 GrpHom 𝑆) ↔ ((𝑇 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
374, 34, 36sylanbrc 583 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹 ∈ (𝑇 GrpHom 𝑆))
3815, 35ghmf 19012 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)
3938adantr 481 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑋𝑌)
4039ffnd 6669 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹 Fn 𝑋)
4135, 15ghmf 19012 . . . . 5 (𝐹 ∈ (𝑇 GrpHom 𝑆) → 𝐹:𝑌𝑋)
4241adantl 482 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑌𝑋)
4342ffnd 6669 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹 Fn 𝑌)
44 dff1o4 6792 . . 3 (𝐹:𝑋1-1-onto𝑌 ↔ (𝐹 Fn 𝑋𝐹 Fn 𝑌))
4540, 43, 44sylanbrc 583 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑋1-1-onto𝑌)
4637, 45impbida 799 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  ccnv 5632   Fn wfn 6491  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  Grpcgrp 18748   GrpHom cghm 19005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-ghm 19006
This theorem is referenced by:  isgim2  19055  rhmf1o  20164  lmhmf1o  20507  rnghmf1o  46191
  Copyright terms: Public domain W3C validator