Step | Hyp | Ref
| Expression |
1 | | ghmgrp2 18442 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) |
2 | | ghmgrp1 18441 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
3 | 1, 2 | jca 515 |
. . . 4
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑇 ∈ Grp ∧ 𝑆 ∈ Grp)) |
4 | 3 | adantr 484 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) → (𝑇 ∈ Grp ∧ 𝑆 ∈ Grp)) |
5 | | f1ocnv 6619 |
. . . . . 6
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) |
6 | 5 | adantl 485 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) → ◡𝐹:𝑌–1-1-onto→𝑋) |
7 | | f1of 6607 |
. . . . 5
⊢ (◡𝐹:𝑌–1-1-onto→𝑋 → ◡𝐹:𝑌⟶𝑋) |
8 | 6, 7 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) → ◡𝐹:𝑌⟶𝑋) |
9 | | simpll 766 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
10 | 8 | adantr 484 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → ◡𝐹:𝑌⟶𝑋) |
11 | | simprl 770 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → 𝑥 ∈ 𝑌) |
12 | 10, 11 | ffvelrnd 6849 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (◡𝐹‘𝑥) ∈ 𝑋) |
13 | | simprr 772 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → 𝑦 ∈ 𝑌) |
14 | 10, 13 | ffvelrnd 6849 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (◡𝐹‘𝑦) ∈ 𝑋) |
15 | | ghmf1o.x |
. . . . . . . . 9
⊢ 𝑋 = (Base‘𝑆) |
16 | | eqid 2758 |
. . . . . . . . 9
⊢
(+g‘𝑆) = (+g‘𝑆) |
17 | | eqid 2758 |
. . . . . . . . 9
⊢
(+g‘𝑇) = (+g‘𝑇) |
18 | 15, 16, 17 | ghmlin 18444 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (◡𝐹‘𝑥) ∈ 𝑋 ∧ (◡𝐹‘𝑦) ∈ 𝑋) → (𝐹‘((◡𝐹‘𝑥)(+g‘𝑆)(◡𝐹‘𝑦))) = ((𝐹‘(◡𝐹‘𝑥))(+g‘𝑇)(𝐹‘(◡𝐹‘𝑦)))) |
19 | 9, 12, 14, 18 | syl3anc 1368 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝐹‘((◡𝐹‘𝑥)(+g‘𝑆)(◡𝐹‘𝑦))) = ((𝐹‘(◡𝐹‘𝑥))(+g‘𝑇)(𝐹‘(◡𝐹‘𝑦)))) |
20 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → 𝐹:𝑋–1-1-onto→𝑌) |
21 | | f1ocnvfv2 7032 |
. . . . . . . . 9
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
22 | 20, 11, 21 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
23 | | f1ocnvfv2 7032 |
. . . . . . . . 9
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑦 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑦)) = 𝑦) |
24 | 20, 13, 23 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝐹‘(◡𝐹‘𝑦)) = 𝑦) |
25 | 22, 24 | oveq12d 7174 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → ((𝐹‘(◡𝐹‘𝑥))(+g‘𝑇)(𝐹‘(◡𝐹‘𝑦))) = (𝑥(+g‘𝑇)𝑦)) |
26 | 19, 25 | eqtrd 2793 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝐹‘((◡𝐹‘𝑥)(+g‘𝑆)(◡𝐹‘𝑦))) = (𝑥(+g‘𝑇)𝑦)) |
27 | 9, 2 | syl 17 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → 𝑆 ∈ Grp) |
28 | 15, 16 | grpcl 18191 |
. . . . . . . 8
⊢ ((𝑆 ∈ Grp ∧ (◡𝐹‘𝑥) ∈ 𝑋 ∧ (◡𝐹‘𝑦) ∈ 𝑋) → ((◡𝐹‘𝑥)(+g‘𝑆)(◡𝐹‘𝑦)) ∈ 𝑋) |
29 | 27, 12, 14, 28 | syl3anc 1368 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → ((◡𝐹‘𝑥)(+g‘𝑆)(◡𝐹‘𝑦)) ∈ 𝑋) |
30 | | f1ocnvfv 7033 |
. . . . . . 7
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ ((◡𝐹‘𝑥)(+g‘𝑆)(◡𝐹‘𝑦)) ∈ 𝑋) → ((𝐹‘((◡𝐹‘𝑥)(+g‘𝑆)(◡𝐹‘𝑦))) = (𝑥(+g‘𝑇)𝑦) → (◡𝐹‘(𝑥(+g‘𝑇)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑆)(◡𝐹‘𝑦)))) |
31 | 20, 29, 30 | syl2anc 587 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → ((𝐹‘((◡𝐹‘𝑥)(+g‘𝑆)(◡𝐹‘𝑦))) = (𝑥(+g‘𝑇)𝑦) → (◡𝐹‘(𝑥(+g‘𝑇)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑆)(◡𝐹‘𝑦)))) |
32 | 26, 31 | mpd 15 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (◡𝐹‘(𝑥(+g‘𝑇)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑆)(◡𝐹‘𝑦))) |
33 | 32 | ralrimivva 3120 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) → ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (◡𝐹‘(𝑥(+g‘𝑇)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑆)(◡𝐹‘𝑦))) |
34 | 8, 33 | jca 515 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) → (◡𝐹:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (◡𝐹‘(𝑥(+g‘𝑇)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑆)(◡𝐹‘𝑦)))) |
35 | | ghmf1o.y |
. . . 4
⊢ 𝑌 = (Base‘𝑇) |
36 | 35, 15, 17, 16 | isghm 18439 |
. . 3
⊢ (◡𝐹 ∈ (𝑇 GrpHom 𝑆) ↔ ((𝑇 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (◡𝐹:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (◡𝐹‘(𝑥(+g‘𝑇)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑆)(◡𝐹‘𝑦))))) |
37 | 4, 34, 36 | sylanbrc 586 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) → ◡𝐹 ∈ (𝑇 GrpHom 𝑆)) |
38 | 15, 35 | ghmf 18443 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
39 | 38 | adantr 484 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑋⟶𝑌) |
40 | 39 | ffnd 6504 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹 Fn 𝑋) |
41 | 35, 15 | ghmf 18443 |
. . . . 5
⊢ (◡𝐹 ∈ (𝑇 GrpHom 𝑆) → ◡𝐹:𝑌⟶𝑋) |
42 | 41 | adantl 485 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 GrpHom 𝑆)) → ◡𝐹:𝑌⟶𝑋) |
43 | 42 | ffnd 6504 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 GrpHom 𝑆)) → ◡𝐹 Fn 𝑌) |
44 | | dff1o4 6615 |
. . 3
⊢ (𝐹:𝑋–1-1-onto→𝑌 ↔ (𝐹 Fn 𝑋 ∧ ◡𝐹 Fn 𝑌)) |
45 | 40, 43, 44 | sylanbrc 586 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑋–1-1-onto→𝑌) |
46 | 37, 45 | impbida 800 |
1
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑇 GrpHom 𝑆))) |