MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf1o Structured version   Visualization version   GIF version

Theorem ghmf1o 18326
Description: A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
ghmf1o.x 𝑋 = (Base‘𝑆)
ghmf1o.y 𝑌 = (Base‘𝑇)
Assertion
Ref Expression
ghmf1o (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))

Proof of Theorem ghmf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp2 18299 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
2 ghmgrp1 18298 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
31, 2jca 512 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑇 ∈ Grp ∧ 𝑆 ∈ Grp))
43adantr 481 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑇 ∈ Grp ∧ 𝑆 ∈ Grp))
5 f1ocnv 6620 . . . . . 6 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
65adantl 482 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹:𝑌1-1-onto𝑋)
7 f1of 6608 . . . . 5 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
86, 7syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹:𝑌𝑋)
9 simpll 763 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
108adantr 481 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹:𝑌𝑋)
11 simprl 767 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑥𝑌)
1210, 11ffvelrnd 6844 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹𝑥) ∈ 𝑋)
13 simprr 769 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑦𝑌)
1410, 13ffvelrnd 6844 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹𝑦) ∈ 𝑋)
15 ghmf1o.x . . . . . . . . 9 𝑋 = (Base‘𝑆)
16 eqid 2818 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
17 eqid 2818 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
1815, 16, 17ghmlin 18301 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))))
199, 12, 14, 18syl3anc 1363 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))))
20 simplr 765 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹:𝑋1-1-onto𝑌)
21 f1ocnvfv2 7025 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
2220, 11, 21syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝐹𝑥)) = 𝑥)
23 f1ocnvfv2 7025 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝑦𝑌) → (𝐹‘(𝐹𝑦)) = 𝑦)
2420, 13, 23syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2522, 24oveq12d 7163 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))) = (𝑥(+g𝑇)𝑦))
2619, 25eqtrd 2853 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦))
279, 2syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑆 ∈ Grp)
2815, 16grpcl 18049 . . . . . . . 8 ((𝑆 ∈ Grp ∧ (𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋) → ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋)
2927, 12, 14, 28syl3anc 1363 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋)
30 f1ocnvfv 7026 . . . . . . 7 ((𝐹:𝑋1-1-onto𝑌 ∧ ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋) → ((𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
3120, 29, 30syl2anc 584 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
3226, 31mpd 15 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
3332ralrimivva 3188 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
348, 33jca 512 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
35 ghmf1o.y . . . 4 𝑌 = (Base‘𝑇)
3635, 15, 17, 16isghm 18296 . . 3 (𝐹 ∈ (𝑇 GrpHom 𝑆) ↔ ((𝑇 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
374, 34, 36sylanbrc 583 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹 ∈ (𝑇 GrpHom 𝑆))
3815, 35ghmf 18300 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)
3938adantr 481 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑋𝑌)
4039ffnd 6508 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹 Fn 𝑋)
4135, 15ghmf 18300 . . . . 5 (𝐹 ∈ (𝑇 GrpHom 𝑆) → 𝐹:𝑌𝑋)
4241adantl 482 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑌𝑋)
4342ffnd 6508 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹 Fn 𝑌)
44 dff1o4 6616 . . 3 (𝐹:𝑋1-1-onto𝑌 ↔ (𝐹 Fn 𝑋𝐹 Fn 𝑌))
4540, 43, 44sylanbrc 583 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑋1-1-onto𝑌)
4637, 45impbida 797 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  ccnv 5547   Fn wfn 6343  wf 6344  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  Grpcgrp 18041   GrpHom cghm 18293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-ghm 18294
This theorem is referenced by:  isgim2  18343  rhmf1o  19413  lmhmf1o  19747  rnghmf1o  44102
  Copyright terms: Public domain W3C validator