MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srngf1o Structured version   Visualization version   GIF version

Theorem srngf1o 19737
Description: The involution function in a star ring is a bijection. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
srngcnv.i = (*rf𝑅)
srngf1o.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
srngf1o (𝑅 ∈ *-Ring → :𝐵1-1-onto𝐵)

Proof of Theorem srngf1o
StepHypRef Expression
1 eqid 2738 . . . 4 (oppr𝑅) = (oppr𝑅)
2 srngcnv.i . . . 4 = (*rf𝑅)
31, 2srngrhm 19734 . . 3 (𝑅 ∈ *-Ring → ∈ (𝑅 RingHom (oppr𝑅)))
4 srngf1o.b . . . 4 𝐵 = (Base‘𝑅)
5 eqid 2738 . . . 4 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
64, 5rhmf 19593 . . 3 ( ∈ (𝑅 RingHom (oppr𝑅)) → :𝐵⟶(Base‘(oppr𝑅)))
7 ffn 6498 . . 3 ( :𝐵⟶(Base‘(oppr𝑅)) → Fn 𝐵)
83, 6, 73syl 18 . 2 (𝑅 ∈ *-Ring → Fn 𝐵)
92srngcnv 19736 . . . 4 (𝑅 ∈ *-Ring → = )
109fneq1d 6425 . . 3 (𝑅 ∈ *-Ring → ( Fn 𝐵 Fn 𝐵))
118, 10mpbid 235 . 2 (𝑅 ∈ *-Ring → Fn 𝐵)
12 dff1o4 6620 . 2 ( :𝐵1-1-onto𝐵 ↔ ( Fn 𝐵 Fn 𝐵))
138, 11, 12sylanbrc 586 1 (𝑅 ∈ *-Ring → :𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2113  ccnv 5518   Fn wfn 6328  wf 6329  1-1-ontowf1o 6332  cfv 6333  (class class class)co 7164  Basecbs 16579  opprcoppr 19487   RingHom crh 19579  *rfcstf 19726  *-Ringcsr 19727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-plusg 16674  df-0g 16811  df-mhm 18065  df-ghm 18467  df-mgp 19352  df-ur 19364  df-ring 19411  df-rnghom 19582  df-srng 19729
This theorem is referenced by:  srngcl  19738  srngnvl  19739  iporthcom  20444
  Copyright terms: Public domain W3C validator