MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srngf1o Structured version   Visualization version   GIF version

Theorem srngf1o 20763
Description: The involution function in a star ring is a bijection. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
srngcnv.i = (*rf𝑅)
srngf1o.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
srngf1o (𝑅 ∈ *-Ring → :𝐵1-1-onto𝐵)

Proof of Theorem srngf1o
StepHypRef Expression
1 eqid 2731 . . . 4 (oppr𝑅) = (oppr𝑅)
2 srngcnv.i . . . 4 = (*rf𝑅)
31, 2srngrhm 20760 . . 3 (𝑅 ∈ *-Ring → ∈ (𝑅 RingHom (oppr𝑅)))
4 srngf1o.b . . . 4 𝐵 = (Base‘𝑅)
5 eqid 2731 . . . 4 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
64, 5rhmf 20402 . . 3 ( ∈ (𝑅 RingHom (oppr𝑅)) → :𝐵⟶(Base‘(oppr𝑅)))
7 ffn 6651 . . 3 ( :𝐵⟶(Base‘(oppr𝑅)) → Fn 𝐵)
83, 6, 73syl 18 . 2 (𝑅 ∈ *-Ring → Fn 𝐵)
92srngcnv 20762 . . . 4 (𝑅 ∈ *-Ring → = )
109fneq1d 6574 . . 3 (𝑅 ∈ *-Ring → ( Fn 𝐵 Fn 𝐵))
118, 10mpbid 232 . 2 (𝑅 ∈ *-Ring → Fn 𝐵)
12 dff1o4 6771 . 2 ( :𝐵1-1-onto𝐵 ↔ ( Fn 𝐵 Fn 𝐵))
138, 11, 12sylanbrc 583 1 (𝑅 ∈ *-Ring → :𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  ccnv 5613   Fn wfn 6476  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Basecbs 17120  opprcoppr 20254   RingHom crh 20387  *rfcstf 20752  *-Ringcsr 20753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mhm 18691  df-ghm 19125  df-mgp 20059  df-ur 20100  df-ring 20153  df-rhm 20390  df-srng 20755
This theorem is referenced by:  srngcl  20764  srngnvl  20765  iporthcom  21572
  Copyright terms: Public domain W3C validator