Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srngf1o | Structured version Visualization version GIF version |
Description: The involution function in a star ring is a bijection. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
srngcnv.i | ⊢ ∗ = (*rf‘𝑅) |
srngf1o.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
srngf1o | ⊢ (𝑅 ∈ *-Ring → ∗ :𝐵–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
2 | srngcnv.i | . . . 4 ⊢ ∗ = (*rf‘𝑅) | |
3 | 1, 2 | srngrhm 19734 | . . 3 ⊢ (𝑅 ∈ *-Ring → ∗ ∈ (𝑅 RingHom (oppr‘𝑅))) |
4 | srngf1o.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
5 | eqid 2738 | . . . 4 ⊢ (Base‘(oppr‘𝑅)) = (Base‘(oppr‘𝑅)) | |
6 | 4, 5 | rhmf 19593 | . . 3 ⊢ ( ∗ ∈ (𝑅 RingHom (oppr‘𝑅)) → ∗ :𝐵⟶(Base‘(oppr‘𝑅))) |
7 | ffn 6498 | . . 3 ⊢ ( ∗ :𝐵⟶(Base‘(oppr‘𝑅)) → ∗ Fn 𝐵) | |
8 | 3, 6, 7 | 3syl 18 | . 2 ⊢ (𝑅 ∈ *-Ring → ∗ Fn 𝐵) |
9 | 2 | srngcnv 19736 | . . . 4 ⊢ (𝑅 ∈ *-Ring → ∗ = ◡ ∗ ) |
10 | 9 | fneq1d 6425 | . . 3 ⊢ (𝑅 ∈ *-Ring → ( ∗ Fn 𝐵 ↔ ◡ ∗ Fn 𝐵)) |
11 | 8, 10 | mpbid 235 | . 2 ⊢ (𝑅 ∈ *-Ring → ◡ ∗ Fn 𝐵) |
12 | dff1o4 6620 | . 2 ⊢ ( ∗ :𝐵–1-1-onto→𝐵 ↔ ( ∗ Fn 𝐵 ∧ ◡ ∗ Fn 𝐵)) | |
13 | 8, 11, 12 | sylanbrc 586 | 1 ⊢ (𝑅 ∈ *-Ring → ∗ :𝐵–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 ◡ccnv 5518 Fn wfn 6328 ⟶wf 6329 –1-1-onto→wf1o 6332 ‘cfv 6333 (class class class)co 7164 Basecbs 16579 opprcoppr 19487 RingHom crh 19579 *rfcstf 19726 *-Ringcsr 19727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-er 8313 df-map 8432 df-en 8549 df-dom 8550 df-sdom 8551 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-ndx 16582 df-slot 16583 df-base 16585 df-sets 16586 df-plusg 16674 df-0g 16811 df-mhm 18065 df-ghm 18467 df-mgp 19352 df-ur 19364 df-ring 19411 df-rnghom 19582 df-srng 19729 |
This theorem is referenced by: srngcl 19738 srngnvl 19739 iporthcom 20444 |
Copyright terms: Public domain | W3C validator |