MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srngf1o Structured version   Visualization version   GIF version

Theorem srngf1o 20793
Description: The involution function in a star ring is a bijection. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
srngcnv.i = (*rf𝑅)
srngf1o.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
srngf1o (𝑅 ∈ *-Ring → :𝐵1-1-onto𝐵)

Proof of Theorem srngf1o
StepHypRef Expression
1 eqid 2734 . . . 4 (oppr𝑅) = (oppr𝑅)
2 srngcnv.i . . . 4 = (*rf𝑅)
31, 2srngrhm 20790 . . 3 (𝑅 ∈ *-Ring → ∈ (𝑅 RingHom (oppr𝑅)))
4 srngf1o.b . . . 4 𝐵 = (Base‘𝑅)
5 eqid 2734 . . . 4 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
64, 5rhmf 20430 . . 3 ( ∈ (𝑅 RingHom (oppr𝑅)) → :𝐵⟶(Base‘(oppr𝑅)))
7 ffn 6702 . . 3 ( :𝐵⟶(Base‘(oppr𝑅)) → Fn 𝐵)
83, 6, 73syl 18 . 2 (𝑅 ∈ *-Ring → Fn 𝐵)
92srngcnv 20792 . . . 4 (𝑅 ∈ *-Ring → = )
109fneq1d 6627 . . 3 (𝑅 ∈ *-Ring → ( Fn 𝐵 Fn 𝐵))
118, 10mpbid 232 . 2 (𝑅 ∈ *-Ring → Fn 𝐵)
12 dff1o4 6822 . 2 ( :𝐵1-1-onto𝐵 ↔ ( Fn 𝐵 Fn 𝐵))
138, 11, 12sylanbrc 583 1 (𝑅 ∈ *-Ring → :𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  ccnv 5650   Fn wfn 6522  wf 6523  1-1-ontowf1o 6526  cfv 6527  (class class class)co 7399  Basecbs 17213  opprcoppr 20281   RingHom crh 20414  *rfcstf 20782  *-Ringcsr 20783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-plusg 17269  df-0g 17440  df-mhm 18746  df-ghm 19181  df-mgp 20086  df-ur 20127  df-ring 20180  df-rhm 20417  df-srng 20785
This theorem is referenced by:  srngcl  20794  srngnvl  20795  iporthcom  21580
  Copyright terms: Public domain W3C validator