| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvf1o | Structured version Visualization version GIF version | ||
| Description: The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpinv11.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Ref | Expression |
|---|---|
| grpinvf1o | ⊢ (𝜑 → 𝑁:𝐵–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv11.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpinvinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpinvinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 4 | 2, 3 | grpinvf 18883 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁:𝐵⟶𝐵) |
| 6 | 5 | ffnd 6657 | . 2 ⊢ (𝜑 → 𝑁 Fn 𝐵) |
| 7 | 2, 3 | grpinvcnv 18903 | . . . . 5 ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) |
| 8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝜑 → ◡𝑁 = 𝑁) |
| 9 | 8 | fneq1d 6579 | . . 3 ⊢ (𝜑 → (◡𝑁 Fn 𝐵 ↔ 𝑁 Fn 𝐵)) |
| 10 | 6, 9 | mpbird 257 | . 2 ⊢ (𝜑 → ◡𝑁 Fn 𝐵) |
| 11 | dff1o4 6776 | . 2 ⊢ (𝑁:𝐵–1-1-onto→𝐵 ↔ (𝑁 Fn 𝐵 ∧ ◡𝑁 Fn 𝐵)) | |
| 12 | 6, 10, 11 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑁:𝐵–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ◡ccnv 5622 Fn wfn 6481 ⟶wf 6482 –1-1-onto→wf1o 6485 ‘cfv 6486 Basecbs 17138 Grpcgrp 18830 invgcminusg 18831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 |
| This theorem is referenced by: invoppggim 19257 gsumsub 19845 dprdfsub 19920 psrnegcl 21879 psrlinv 21880 mdetleib2 22491 ply1divalg3 35614 lflnegl 39054 |
| Copyright terms: Public domain | W3C validator |