MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvf1o Structured version   Visualization version   GIF version

Theorem grpinvf1o 18948
Description: The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
grpinv11.g (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
grpinvf1o (𝜑𝑁:𝐵1-1-onto𝐵)

Proof of Theorem grpinvf1o
StepHypRef Expression
1 grpinv11.g . . . 4 (𝜑𝐺 ∈ Grp)
2 grpinvinv.b . . . . 5 𝐵 = (Base‘𝐺)
3 grpinvinv.n . . . . 5 𝑁 = (invg𝐺)
42, 3grpinvf 18925 . . . 4 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
51, 4syl 17 . . 3 (𝜑𝑁:𝐵𝐵)
65ffnd 6692 . 2 (𝜑𝑁 Fn 𝐵)
72, 3grpinvcnv 18945 . . . . 5 (𝐺 ∈ Grp → 𝑁 = 𝑁)
81, 7syl 17 . . . 4 (𝜑𝑁 = 𝑁)
98fneq1d 6614 . . 3 (𝜑 → (𝑁 Fn 𝐵𝑁 Fn 𝐵))
106, 9mpbird 257 . 2 (𝜑𝑁 Fn 𝐵)
11 dff1o4 6811 . 2 (𝑁:𝐵1-1-onto𝐵 ↔ (𝑁 Fn 𝐵𝑁 Fn 𝐵))
126, 10, 11sylanbrc 583 1 (𝜑𝑁:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ccnv 5640   Fn wfn 6509  wf 6510  1-1-ontowf1o 6513  cfv 6514  Basecbs 17186  Grpcgrp 18872  invgcminusg 18873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876
This theorem is referenced by:  invoppggim  19299  gsumsub  19885  dprdfsub  19960  psrnegcl  21870  psrlinv  21871  mdetleib2  22482  ply1divalg3  35636  lflnegl  39076
  Copyright terms: Public domain W3C validator