MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvf1o Structured version   Visualization version   GIF version

Theorem grpinvf1o 18645
Description: The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
grpinv11.g (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
grpinvf1o (𝜑𝑁:𝐵1-1-onto𝐵)

Proof of Theorem grpinvf1o
StepHypRef Expression
1 grpinv11.g . . . 4 (𝜑𝐺 ∈ Grp)
2 grpinvinv.b . . . . 5 𝐵 = (Base‘𝐺)
3 grpinvinv.n . . . . 5 𝑁 = (invg𝐺)
42, 3grpinvf 18626 . . . 4 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
51, 4syl 17 . . 3 (𝜑𝑁:𝐵𝐵)
65ffnd 6601 . 2 (𝜑𝑁 Fn 𝐵)
72, 3grpinvcnv 18643 . . . . 5 (𝐺 ∈ Grp → 𝑁 = 𝑁)
81, 7syl 17 . . . 4 (𝜑𝑁 = 𝑁)
98fneq1d 6526 . . 3 (𝜑 → (𝑁 Fn 𝐵𝑁 Fn 𝐵))
106, 9mpbird 256 . 2 (𝜑𝑁 Fn 𝐵)
11 dff1o4 6724 . 2 (𝑁:𝐵1-1-onto𝐵 ↔ (𝑁 Fn 𝐵𝑁 Fn 𝐵))
126, 10, 11sylanbrc 583 1 (𝜑𝑁:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  ccnv 5588   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  Basecbs 16912  Grpcgrp 18577  invgcminusg 18578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581
This theorem is referenced by:  invoppggim  18967  gsumsub  19549  dprdfsub  19624  psrnegcl  21165  psrlinv  21166  mdetleib2  21737  lflnegl  37090
  Copyright terms: Public domain W3C validator