![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvf1o | Structured version Visualization version GIF version |
Description: The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpinv11.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpinvf1o | ⊢ (𝜑 → 𝑁:𝐵–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinv11.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grpinvinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpinvinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
4 | 2, 3 | grpinvf 19026 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁:𝐵⟶𝐵) |
6 | 5 | ffnd 6748 | . 2 ⊢ (𝜑 → 𝑁 Fn 𝐵) |
7 | 2, 3 | grpinvcnv 19046 | . . . . 5 ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝜑 → ◡𝑁 = 𝑁) |
9 | 8 | fneq1d 6672 | . . 3 ⊢ (𝜑 → (◡𝑁 Fn 𝐵 ↔ 𝑁 Fn 𝐵)) |
10 | 6, 9 | mpbird 257 | . 2 ⊢ (𝜑 → ◡𝑁 Fn 𝐵) |
11 | dff1o4 6870 | . 2 ⊢ (𝑁:𝐵–1-1-onto→𝐵 ↔ (𝑁 Fn 𝐵 ∧ ◡𝑁 Fn 𝐵)) | |
12 | 6, 10, 11 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝑁:𝐵–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ◡ccnv 5699 Fn wfn 6568 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 Basecbs 17258 Grpcgrp 18973 invgcminusg 18974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 |
This theorem is referenced by: invoppggim 19403 gsumsub 19990 dprdfsub 20065 psrnegcl 21997 psrlinv 21998 mdetleib2 22615 ply1divalg3 35610 lflnegl 39032 |
Copyright terms: Public domain | W3C validator |