MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvf1o Structured version   Visualization version   GIF version

Theorem grpinvf1o 18893
Description: The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
grpinv11.g (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
grpinvf1o (𝜑𝑁:𝐵1-1-onto𝐵)

Proof of Theorem grpinvf1o
StepHypRef Expression
1 grpinv11.g . . . 4 (𝜑𝐺 ∈ Grp)
2 grpinvinv.b . . . . 5 𝐵 = (Base‘𝐺)
3 grpinvinv.n . . . . 5 𝑁 = (invg𝐺)
42, 3grpinvf 18871 . . . 4 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
51, 4syl 17 . . 3 (𝜑𝑁:𝐵𝐵)
65ffnd 6719 . 2 (𝜑𝑁 Fn 𝐵)
72, 3grpinvcnv 18891 . . . . 5 (𝐺 ∈ Grp → 𝑁 = 𝑁)
81, 7syl 17 . . . 4 (𝜑𝑁 = 𝑁)
98fneq1d 6643 . . 3 (𝜑 → (𝑁 Fn 𝐵𝑁 Fn 𝐵))
106, 9mpbird 257 . 2 (𝜑𝑁 Fn 𝐵)
11 dff1o4 6842 . 2 (𝑁:𝐵1-1-onto𝐵 ↔ (𝑁 Fn 𝐵𝑁 Fn 𝐵))
126, 10, 11sylanbrc 584 1 (𝜑𝑁:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  ccnv 5676   Fn wfn 6539  wf 6540  1-1-ontowf1o 6543  cfv 6544  Basecbs 17144  Grpcgrp 18819  invgcminusg 18820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823
This theorem is referenced by:  invoppggim  19227  gsumsub  19816  dprdfsub  19891  psrnegcl  21515  psrlinv  21516  mdetleib2  22090  lflnegl  37946
  Copyright terms: Public domain W3C validator