Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpinvf1o | Structured version Visualization version GIF version |
Description: The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpinv11.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpinvf1o | ⊢ (𝜑 → 𝑁:𝐵–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinv11.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grpinvinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpinvinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
4 | 2, 3 | grpinvf 18541 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁:𝐵⟶𝐵) |
6 | 5 | ffnd 6585 | . 2 ⊢ (𝜑 → 𝑁 Fn 𝐵) |
7 | 2, 3 | grpinvcnv 18558 | . . . . 5 ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝜑 → ◡𝑁 = 𝑁) |
9 | 8 | fneq1d 6510 | . . 3 ⊢ (𝜑 → (◡𝑁 Fn 𝐵 ↔ 𝑁 Fn 𝐵)) |
10 | 6, 9 | mpbird 256 | . 2 ⊢ (𝜑 → ◡𝑁 Fn 𝐵) |
11 | dff1o4 6708 | . 2 ⊢ (𝑁:𝐵–1-1-onto→𝐵 ↔ (𝑁 Fn 𝐵 ∧ ◡𝑁 Fn 𝐵)) | |
12 | 6, 10, 11 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝑁:𝐵–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ◡ccnv 5579 Fn wfn 6413 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 Basecbs 16840 Grpcgrp 18492 invgcminusg 18493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 |
This theorem is referenced by: invoppggim 18882 gsumsub 19464 dprdfsub 19539 psrnegcl 21075 psrlinv 21076 mdetleib2 21645 lflnegl 37017 |
Copyright terms: Public domain | W3C validator |