![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnvd | Structured version Visualization version GIF version |
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
f1od.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
f1od.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊) |
f1od.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋) |
f1od.4 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) |
Ref | Expression |
---|---|
f1ocnvd | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1od.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊) | |
2 | 1 | ralrimiva 3149 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝑊) |
3 | f1od.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
4 | 3 | fnmpt 6356 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝑊 → 𝐹 Fn 𝐴) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
6 | f1od.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋) | |
7 | 6 | ralrimiva 3149 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 𝐷 ∈ 𝑋) |
8 | eqid 2795 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐷) = (𝑦 ∈ 𝐵 ↦ 𝐷) | |
9 | 8 | fnmpt 6356 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝐷 ∈ 𝑋 → (𝑦 ∈ 𝐵 ↦ 𝐷) Fn 𝐵) |
10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝐷) Fn 𝐵) |
11 | f1od.4 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) | |
12 | 11 | opabbidv 5028 | . . . . . 6 ⊢ (𝜑 → {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)}) |
13 | df-mpt 5042 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | |
14 | 3, 13 | eqtri 2819 | . . . . . . . 8 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} |
15 | 14 | cnveqi 5631 | . . . . . . 7 ⊢ ◡𝐹 = ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} |
16 | cnvopab 5873 | . . . . . . 7 ⊢ ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | |
17 | 15, 16 | eqtri 2819 | . . . . . 6 ⊢ ◡𝐹 = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} |
18 | df-mpt 5042 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐷) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)} | |
19 | 12, 17, 18 | 3eqtr4g 2856 | . . . . 5 ⊢ (𝜑 → ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷)) |
20 | 19 | fneq1d 6316 | . . . 4 ⊢ (𝜑 → (◡𝐹 Fn 𝐵 ↔ (𝑦 ∈ 𝐵 ↦ 𝐷) Fn 𝐵)) |
21 | 10, 20 | mpbird 258 | . . 3 ⊢ (𝜑 → ◡𝐹 Fn 𝐵) |
22 | dff1o4 6491 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
23 | 5, 21, 22 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
24 | 23, 19 | jca 512 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∀wral 3105 {copab 5024 ↦ cmpt 5041 ◡ccnv 5442 Fn wfn 6220 –1-1-onto→wf1o 6224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 |
This theorem is referenced by: f1od 7255 f1ocnv2d 7256 pw2f1ocnv 39119 |
Copyright terms: Public domain | W3C validator |