MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvd Structured version   Visualization version   GIF version

Theorem f1ocnvd 7520
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
f1od.1 𝐹 = (𝑥𝐴𝐶)
f1od.2 ((𝜑𝑥𝐴) → 𝐶𝑊)
f1od.3 ((𝜑𝑦𝐵) → 𝐷𝑋)
f1od.4 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
Assertion
Ref Expression
f1ocnvd (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem f1ocnvd
StepHypRef Expression
1 f1od.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝑊)
21ralrimiva 3103 . . . 4 (𝜑 → ∀𝑥𝐴 𝐶𝑊)
3 f1od.1 . . . . 5 𝐹 = (𝑥𝐴𝐶)
43fnmpt 6573 . . . 4 (∀𝑥𝐴 𝐶𝑊𝐹 Fn 𝐴)
52, 4syl 17 . . 3 (𝜑𝐹 Fn 𝐴)
6 f1od.3 . . . . . 6 ((𝜑𝑦𝐵) → 𝐷𝑋)
76ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑦𝐵 𝐷𝑋)
8 eqid 2738 . . . . . 6 (𝑦𝐵𝐷) = (𝑦𝐵𝐷)
98fnmpt 6573 . . . . 5 (∀𝑦𝐵 𝐷𝑋 → (𝑦𝐵𝐷) Fn 𝐵)
107, 9syl 17 . . . 4 (𝜑 → (𝑦𝐵𝐷) Fn 𝐵)
11 f1od.4 . . . . . . 7 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
1211opabbidv 5140 . . . . . 6 (𝜑 → {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)})
13 df-mpt 5158 . . . . . . . . 9 (𝑥𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
143, 13eqtri 2766 . . . . . . . 8 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
1514cnveqi 5783 . . . . . . 7 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
16 cnvopab 6042 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
1715, 16eqtri 2766 . . . . . 6 𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
18 df-mpt 5158 . . . . . 6 (𝑦𝐵𝐷) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)}
1912, 17, 183eqtr4g 2803 . . . . 5 (𝜑𝐹 = (𝑦𝐵𝐷))
2019fneq1d 6526 . . . 4 (𝜑 → (𝐹 Fn 𝐵 ↔ (𝑦𝐵𝐷) Fn 𝐵))
2110, 20mpbird 256 . . 3 (𝜑𝐹 Fn 𝐵)
22 dff1o4 6724 . . 3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
235, 21, 22sylanbrc 583 . 2 (𝜑𝐹:𝐴1-1-onto𝐵)
2423, 19jca 512 1 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  {copab 5136  cmpt 5157  ccnv 5588   Fn wfn 6428  1-1-ontowf1o 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440
This theorem is referenced by:  f1od  7521  f1ocnv2d  7522  pw2f1ocnv  40859
  Copyright terms: Public domain W3C validator