Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ocnvd | Structured version Visualization version GIF version |
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
f1od.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
f1od.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊) |
f1od.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋) |
f1od.4 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) |
Ref | Expression |
---|---|
f1ocnvd | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1od.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊) | |
2 | 1 | ralrimiva 3107 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝑊) |
3 | f1od.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
4 | 3 | fnmpt 6557 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝑊 → 𝐹 Fn 𝐴) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
6 | f1od.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋) | |
7 | 6 | ralrimiva 3107 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 𝐷 ∈ 𝑋) |
8 | eqid 2738 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐷) = (𝑦 ∈ 𝐵 ↦ 𝐷) | |
9 | 8 | fnmpt 6557 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝐷 ∈ 𝑋 → (𝑦 ∈ 𝐵 ↦ 𝐷) Fn 𝐵) |
10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝐷) Fn 𝐵) |
11 | f1od.4 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) | |
12 | 11 | opabbidv 5136 | . . . . . 6 ⊢ (𝜑 → {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)}) |
13 | df-mpt 5154 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | |
14 | 3, 13 | eqtri 2766 | . . . . . . . 8 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} |
15 | 14 | cnveqi 5772 | . . . . . . 7 ⊢ ◡𝐹 = ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} |
16 | cnvopab 6031 | . . . . . . 7 ⊢ ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | |
17 | 15, 16 | eqtri 2766 | . . . . . 6 ⊢ ◡𝐹 = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} |
18 | df-mpt 5154 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐷) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)} | |
19 | 12, 17, 18 | 3eqtr4g 2804 | . . . . 5 ⊢ (𝜑 → ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷)) |
20 | 19 | fneq1d 6510 | . . . 4 ⊢ (𝜑 → (◡𝐹 Fn 𝐵 ↔ (𝑦 ∈ 𝐵 ↦ 𝐷) Fn 𝐵)) |
21 | 10, 20 | mpbird 256 | . . 3 ⊢ (𝜑 → ◡𝐹 Fn 𝐵) |
22 | dff1o4 6708 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
23 | 5, 21, 22 | sylanbrc 582 | . 2 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
24 | 23, 19 | jca 511 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {copab 5132 ↦ cmpt 5153 ◡ccnv 5579 Fn wfn 6413 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: f1od 7499 f1ocnv2d 7500 pw2f1ocnv 40775 |
Copyright terms: Public domain | W3C validator |