![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnvd | Structured version Visualization version GIF version |
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
f1od.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
f1od.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊) |
f1od.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋) |
f1od.4 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) |
Ref | Expression |
---|---|
f1ocnvd | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1od.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊) | |
2 | 1 | ralrimiva 3144 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝑊) |
3 | f1od.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
4 | 3 | fnmpt 6709 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝑊 → 𝐹 Fn 𝐴) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
6 | f1od.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋) | |
7 | 6 | ralrimiva 3144 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 𝐷 ∈ 𝑋) |
8 | eqid 2735 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐷) = (𝑦 ∈ 𝐵 ↦ 𝐷) | |
9 | 8 | fnmpt 6709 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝐷 ∈ 𝑋 → (𝑦 ∈ 𝐵 ↦ 𝐷) Fn 𝐵) |
10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝐷) Fn 𝐵) |
11 | f1od.4 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) | |
12 | 11 | opabbidv 5214 | . . . . . 6 ⊢ (𝜑 → {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)}) |
13 | df-mpt 5232 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | |
14 | 3, 13 | eqtri 2763 | . . . . . . . 8 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} |
15 | 14 | cnveqi 5888 | . . . . . . 7 ⊢ ◡𝐹 = ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} |
16 | cnvopab 6160 | . . . . . . 7 ⊢ ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | |
17 | 15, 16 | eqtri 2763 | . . . . . 6 ⊢ ◡𝐹 = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} |
18 | df-mpt 5232 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐷) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)} | |
19 | 12, 17, 18 | 3eqtr4g 2800 | . . . . 5 ⊢ (𝜑 → ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷)) |
20 | 19 | fneq1d 6662 | . . . 4 ⊢ (𝜑 → (◡𝐹 Fn 𝐵 ↔ (𝑦 ∈ 𝐵 ↦ 𝐷) Fn 𝐵)) |
21 | 10, 20 | mpbird 257 | . . 3 ⊢ (𝜑 → ◡𝐹 Fn 𝐵) |
22 | dff1o4 6857 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
23 | 5, 21, 22 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
24 | 23, 19 | jca 511 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {copab 5210 ↦ cmpt 5231 ◡ccnv 5688 Fn wfn 6558 –1-1-onto→wf1o 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 |
This theorem is referenced by: f1od 7685 f1ocnv2d 7686 pw2f1ocnv 43026 |
Copyright terms: Public domain | W3C validator |