|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > f1ocnvd | Structured version Visualization version GIF version | ||
| Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| f1od.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | 
| f1od.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊) | 
| f1od.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋) | 
| f1od.4 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) | 
| Ref | Expression | 
|---|---|
| f1ocnvd | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1od.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊) | |
| 2 | 1 | ralrimiva 3146 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝑊) | 
| 3 | f1od.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 4 | 3 | fnmpt 6708 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝑊 → 𝐹 Fn 𝐴) | 
| 5 | 2, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | 
| 6 | f1od.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋) | |
| 7 | 6 | ralrimiva 3146 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 𝐷 ∈ 𝑋) | 
| 8 | eqid 2737 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐷) = (𝑦 ∈ 𝐵 ↦ 𝐷) | |
| 9 | 8 | fnmpt 6708 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝐷 ∈ 𝑋 → (𝑦 ∈ 𝐵 ↦ 𝐷) Fn 𝐵) | 
| 10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝐷) Fn 𝐵) | 
| 11 | f1od.4 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) | |
| 12 | 11 | opabbidv 5209 | . . . . . 6 ⊢ (𝜑 → {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)}) | 
| 13 | df-mpt 5226 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | |
| 14 | 3, 13 | eqtri 2765 | . . . . . . . 8 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | 
| 15 | 14 | cnveqi 5885 | . . . . . . 7 ⊢ ◡𝐹 = ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | 
| 16 | cnvopab 6157 | . . . . . . 7 ⊢ ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | |
| 17 | 15, 16 | eqtri 2765 | . . . . . 6 ⊢ ◡𝐹 = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | 
| 18 | df-mpt 5226 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐷) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)} | |
| 19 | 12, 17, 18 | 3eqtr4g 2802 | . . . . 5 ⊢ (𝜑 → ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷)) | 
| 20 | 19 | fneq1d 6661 | . . . 4 ⊢ (𝜑 → (◡𝐹 Fn 𝐵 ↔ (𝑦 ∈ 𝐵 ↦ 𝐷) Fn 𝐵)) | 
| 21 | 10, 20 | mpbird 257 | . . 3 ⊢ (𝜑 → ◡𝐹 Fn 𝐵) | 
| 22 | dff1o4 6856 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
| 23 | 5, 21, 22 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | 
| 24 | 23, 19 | jca 511 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 {copab 5205 ↦ cmpt 5225 ◡ccnv 5684 Fn wfn 6556 –1-1-onto→wf1o 6560 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 | 
| This theorem is referenced by: f1od 7685 f1ocnv2d 7686 pw2f1ocnv 43049 | 
| Copyright terms: Public domain | W3C validator |