MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeof1o2 Structured version   Visualization version   GIF version

Theorem hmeof1o2 23577
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeof1o2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) β†’ 𝐹:𝑋–1-1-ontoβ†’π‘Œ)

Proof of Theorem hmeof1o2
StepHypRef Expression
1 hmeocn 23574 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) β†’ 𝐹 ∈ (𝐽 Cn 𝐾))
2 cnf2 23063 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
31, 2syl3an3 1162 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
43ffnd 6708 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) β†’ 𝐹 Fn 𝑋)
5 hmeocnvcn 23575 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) β†’ ◑𝐹 ∈ (𝐾 Cn 𝐽))
6 cnf2 23063 . . . . 5 ((𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐽 ∈ (TopOnβ€˜π‘‹) ∧ ◑𝐹 ∈ (𝐾 Cn 𝐽)) β†’ ◑𝐹:π‘ŒβŸΆπ‘‹)
763com12 1120 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ◑𝐹 ∈ (𝐾 Cn 𝐽)) β†’ ◑𝐹:π‘ŒβŸΆπ‘‹)
85, 7syl3an3 1162 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) β†’ ◑𝐹:π‘ŒβŸΆπ‘‹)
98ffnd 6708 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) β†’ ◑𝐹 Fn π‘Œ)
10 dff1o4 6831 . 2 (𝐹:𝑋–1-1-ontoβ†’π‘Œ ↔ (𝐹 Fn 𝑋 ∧ ◑𝐹 Fn π‘Œ))
114, 9, 10sylanbrc 582 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) β†’ 𝐹:𝑋–1-1-ontoβ†’π‘Œ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1084   ∈ wcel 2098  β—‘ccnv 5665   Fn wfn 6528  βŸΆwf 6529  β€“1-1-ontoβ†’wf1o 6532  β€˜cfv 6533  (class class class)co 7401  TopOnctopon 22722   Cn ccn 23038  Homeochmeo 23567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-map 8817  df-top 22706  df-topon 22723  df-cn 23041  df-hmeo 23569
This theorem is referenced by:  hmeof1o  23578  qtophmeo  23631  cvmsf1o  34718
  Copyright terms: Public domain W3C validator