![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeof1o2 | Structured version Visualization version GIF version |
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmeof1o2 | β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½HomeoπΎ)) β πΉ:πβ1-1-ontoβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocn 23574 | . . . 4 β’ (πΉ β (π½HomeoπΎ) β πΉ β (π½ Cn πΎ)) | |
2 | cnf2 23063 | . . . 4 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½ Cn πΎ)) β πΉ:πβΆπ) | |
3 | 1, 2 | syl3an3 1162 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½HomeoπΎ)) β πΉ:πβΆπ) |
4 | 3 | ffnd 6708 | . 2 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½HomeoπΎ)) β πΉ Fn π) |
5 | hmeocnvcn 23575 | . . . 4 β’ (πΉ β (π½HomeoπΎ) β β‘πΉ β (πΎ Cn π½)) | |
6 | cnf2 23063 | . . . . 5 β’ ((πΎ β (TopOnβπ) β§ π½ β (TopOnβπ) β§ β‘πΉ β (πΎ Cn π½)) β β‘πΉ:πβΆπ) | |
7 | 6 | 3com12 1120 | . . . 4 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ β‘πΉ β (πΎ Cn π½)) β β‘πΉ:πβΆπ) |
8 | 5, 7 | syl3an3 1162 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½HomeoπΎ)) β β‘πΉ:πβΆπ) |
9 | 8 | ffnd 6708 | . 2 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½HomeoπΎ)) β β‘πΉ Fn π) |
10 | dff1o4 6831 | . 2 β’ (πΉ:πβ1-1-ontoβπ β (πΉ Fn π β§ β‘πΉ Fn π)) | |
11 | 4, 9, 10 | sylanbrc 582 | 1 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½HomeoπΎ)) β πΉ:πβ1-1-ontoβπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 β wcel 2098 β‘ccnv 5665 Fn wfn 6528 βΆwf 6529 β1-1-ontoβwf1o 6532 βcfv 6533 (class class class)co 7401 TopOnctopon 22722 Cn ccn 23038 Homeochmeo 23567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-map 8817 df-top 22706 df-topon 22723 df-cn 23041 df-hmeo 23569 |
This theorem is referenced by: hmeof1o 23578 qtophmeo 23631 cvmsf1o 34718 |
Copyright terms: Public domain | W3C validator |