| Step | Hyp | Ref
| Expression |
| 1 | | lmhmf1o.y |
. . 3
⊢ 𝑌 = (Base‘𝑇) |
| 2 | | eqid 2736 |
. . 3
⊢ (
·𝑠 ‘𝑇) = ( ·𝑠
‘𝑇) |
| 3 | | eqid 2736 |
. . 3
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) |
| 4 | | eqid 2736 |
. . 3
⊢
(Scalar‘𝑇) =
(Scalar‘𝑇) |
| 5 | | eqid 2736 |
. . 3
⊢
(Scalar‘𝑆) =
(Scalar‘𝑆) |
| 6 | | eqid 2736 |
. . 3
⊢
(Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇)) |
| 7 | | lmhmlmod2 20995 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
| 8 | 7 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) → 𝑇 ∈ LMod) |
| 9 | | lmhmlmod1 20996 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
| 10 | 9 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) → 𝑆 ∈ LMod) |
| 11 | 5, 4 | lmhmsca 20993 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
| 12 | 11 | eqcomd 2742 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑆) = (Scalar‘𝑇)) |
| 13 | 12 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) → (Scalar‘𝑆) = (Scalar‘𝑇)) |
| 14 | | lmghm 20994 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 15 | | lmhmf1o.x |
. . . . . 6
⊢ 𝑋 = (Base‘𝑆) |
| 16 | 15, 1 | ghmf1o 19236 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑇 GrpHom 𝑆))) |
| 17 | 14, 16 | syl 17 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑇 GrpHom 𝑆))) |
| 18 | 17 | biimpa 476 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) → ◡𝐹 ∈ (𝑇 GrpHom 𝑆)) |
| 19 | | simpll 766 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ 𝑌)) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 20 | 13 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) →
(Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑇))) |
| 21 | 20 | eleq2d 2821 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) → (𝑎 ∈ (Base‘(Scalar‘𝑆)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑇)))) |
| 22 | 21 | biimpar 477 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → 𝑎 ∈ (Base‘(Scalar‘𝑆))) |
| 23 | 22 | adantrr 717 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ 𝑌)) → 𝑎 ∈ (Base‘(Scalar‘𝑆))) |
| 24 | | f1ocnv 6835 |
. . . . . . . . . 10
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) |
| 25 | | f1of 6823 |
. . . . . . . . . 10
⊢ (◡𝐹:𝑌–1-1-onto→𝑋 → ◡𝐹:𝑌⟶𝑋) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌⟶𝑋) |
| 27 | 26 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) → ◡𝐹:𝑌⟶𝑋) |
| 28 | 27 | ffvelcdmda 7079 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ 𝑏 ∈ 𝑌) → (◡𝐹‘𝑏) ∈ 𝑋) |
| 29 | 28 | adantrl 716 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ 𝑌)) → (◡𝐹‘𝑏) ∈ 𝑋) |
| 30 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) |
| 31 | 5, 30, 15, 3, 2 | lmhmlin 20998 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ (◡𝐹‘𝑏) ∈ 𝑋) → (𝐹‘(𝑎( ·𝑠
‘𝑆)(◡𝐹‘𝑏))) = (𝑎( ·𝑠
‘𝑇)(𝐹‘(◡𝐹‘𝑏)))) |
| 32 | 19, 23, 29, 31 | syl3anc 1373 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ 𝑌)) → (𝐹‘(𝑎( ·𝑠
‘𝑆)(◡𝐹‘𝑏))) = (𝑎( ·𝑠
‘𝑇)(𝐹‘(◡𝐹‘𝑏)))) |
| 33 | | f1ocnvfv2 7275 |
. . . . . . 7
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑏 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) |
| 34 | 33 | ad2ant2l 746 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ 𝑌)) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) |
| 35 | 34 | oveq2d 7426 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ 𝑌)) → (𝑎( ·𝑠
‘𝑇)(𝐹‘(◡𝐹‘𝑏))) = (𝑎( ·𝑠
‘𝑇)𝑏)) |
| 36 | 32, 35 | eqtrd 2771 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ 𝑌)) → (𝐹‘(𝑎( ·𝑠
‘𝑆)(◡𝐹‘𝑏))) = (𝑎( ·𝑠
‘𝑇)𝑏)) |
| 37 | | simplr 768 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ 𝑌)) → 𝐹:𝑋–1-1-onto→𝑌) |
| 38 | 10 | adantr 480 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ 𝑌)) → 𝑆 ∈ LMod) |
| 39 | 15, 5, 3, 30 | lmodvscl 20840 |
. . . . . 6
⊢ ((𝑆 ∈ LMod ∧ 𝑎 ∈
(Base‘(Scalar‘𝑆)) ∧ (◡𝐹‘𝑏) ∈ 𝑋) → (𝑎( ·𝑠
‘𝑆)(◡𝐹‘𝑏)) ∈ 𝑋) |
| 40 | 38, 23, 29, 39 | syl3anc 1373 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ 𝑌)) → (𝑎( ·𝑠
‘𝑆)(◡𝐹‘𝑏)) ∈ 𝑋) |
| 41 | | f1ocnvfv 7276 |
. . . . 5
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ (𝑎( ·𝑠
‘𝑆)(◡𝐹‘𝑏)) ∈ 𝑋) → ((𝐹‘(𝑎( ·𝑠
‘𝑆)(◡𝐹‘𝑏))) = (𝑎( ·𝑠
‘𝑇)𝑏) → (◡𝐹‘(𝑎( ·𝑠
‘𝑇)𝑏)) = (𝑎( ·𝑠
‘𝑆)(◡𝐹‘𝑏)))) |
| 42 | 37, 40, 41 | syl2anc 584 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ 𝑌)) → ((𝐹‘(𝑎( ·𝑠
‘𝑆)(◡𝐹‘𝑏))) = (𝑎( ·𝑠
‘𝑇)𝑏) → (◡𝐹‘(𝑎( ·𝑠
‘𝑇)𝑏)) = (𝑎( ·𝑠
‘𝑆)(◡𝐹‘𝑏)))) |
| 43 | 36, 42 | mpd 15 |
. . 3
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ 𝑌)) → (◡𝐹‘(𝑎( ·𝑠
‘𝑇)𝑏)) = (𝑎( ·𝑠
‘𝑆)(◡𝐹‘𝑏))) |
| 44 | 1, 2, 3, 4, 5, 6, 8, 10, 13, 18, 43 | islmhmd 21002 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋–1-1-onto→𝑌) → ◡𝐹 ∈ (𝑇 LMHom 𝑆)) |
| 45 | 15, 1 | lmhmf 20997 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑋⟶𝑌) |
| 46 | 45 | ffnd 6712 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 Fn 𝑋) |
| 47 | 46 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 LMHom 𝑆)) → 𝐹 Fn 𝑋) |
| 48 | 1, 15 | lmhmf 20997 |
. . . . 5
⊢ (◡𝐹 ∈ (𝑇 LMHom 𝑆) → ◡𝐹:𝑌⟶𝑋) |
| 49 | 48 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 LMHom 𝑆)) → ◡𝐹:𝑌⟶𝑋) |
| 50 | 49 | ffnd 6712 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 LMHom 𝑆)) → ◡𝐹 Fn 𝑌) |
| 51 | | dff1o4 6831 |
. . 3
⊢ (𝐹:𝑋–1-1-onto→𝑌 ↔ (𝐹 Fn 𝑋 ∧ ◡𝐹 Fn 𝑌)) |
| 52 | 47, 50, 51 | sylanbrc 583 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ ◡𝐹 ∈ (𝑇 LMHom 𝑆)) → 𝐹:𝑋–1-1-onto→𝑌) |
| 53 | 44, 52 | impbida 800 |
1
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑇 LMHom 𝑆))) |