MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmf1o Structured version   Visualization version   GIF version

Theorem lmhmf1o 19891
Description: A bijective module homomorphism is also converse homomorphic. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
lmhmf1o.x 𝑋 = (Base‘𝑆)
lmhmf1o.y 𝑌 = (Base‘𝑇)
Assertion
Ref Expression
lmhmf1o (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 LMHom 𝑆)))

Proof of Theorem lmhmf1o
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmf1o.y . . 3 𝑌 = (Base‘𝑇)
2 eqid 2758 . . 3 ( ·𝑠𝑇) = ( ·𝑠𝑇)
3 eqid 2758 . . 3 ( ·𝑠𝑆) = ( ·𝑠𝑆)
4 eqid 2758 . . 3 (Scalar‘𝑇) = (Scalar‘𝑇)
5 eqid 2758 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
6 eqid 2758 . . 3 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
7 lmhmlmod2 19877 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
87adantr 484 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝑇 ∈ LMod)
9 lmhmlmod1 19878 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
109adantr 484 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝑆 ∈ LMod)
115, 4lmhmsca 19875 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
1211eqcomd 2764 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑆) = (Scalar‘𝑇))
1312adantr 484 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (Scalar‘𝑆) = (Scalar‘𝑇))
14 lmghm 19876 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
15 lmhmf1o.x . . . . . 6 𝑋 = (Base‘𝑆)
1615, 1ghmf1o 18460 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))
1714, 16syl 17 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))
1817biimpa 480 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹 ∈ (𝑇 GrpHom 𝑆))
19 simpll 766 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
2013fveq2d 6666 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑇)))
2120eleq2d 2837 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑎 ∈ (Base‘(Scalar‘𝑆)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑇))))
2221biimpar 481 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
2322adantrr 716 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
24 f1ocnv 6618 . . . . . . . . . 10 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
25 f1of 6606 . . . . . . . . . 10 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
2624, 25syl 17 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌𝑋)
2726adantl 485 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹:𝑌𝑋)
2827ffvelrnda 6847 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑏𝑌) → (𝐹𝑏) ∈ 𝑋)
2928adantrl 715 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → (𝐹𝑏) ∈ 𝑋)
30 eqid 2758 . . . . . . 7 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
315, 30, 15, 3, 2lmhmlin 19880 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ (𝐹𝑏) ∈ 𝑋) → (𝐹‘(𝑎( ·𝑠𝑆)(𝐹𝑏))) = (𝑎( ·𝑠𝑇)(𝐹‘(𝐹𝑏))))
3219, 23, 29, 31syl3anc 1368 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → (𝐹‘(𝑎( ·𝑠𝑆)(𝐹𝑏))) = (𝑎( ·𝑠𝑇)(𝐹‘(𝐹𝑏))))
33 f1ocnvfv2 7031 . . . . . . 7 ((𝐹:𝑋1-1-onto𝑌𝑏𝑌) → (𝐹‘(𝐹𝑏)) = 𝑏)
3433ad2ant2l 745 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → (𝐹‘(𝐹𝑏)) = 𝑏)
3534oveq2d 7171 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → (𝑎( ·𝑠𝑇)(𝐹‘(𝐹𝑏))) = (𝑎( ·𝑠𝑇)𝑏))
3632, 35eqtrd 2793 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → (𝐹‘(𝑎( ·𝑠𝑆)(𝐹𝑏))) = (𝑎( ·𝑠𝑇)𝑏))
37 simplr 768 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → 𝐹:𝑋1-1-onto𝑌)
3810adantr 484 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → 𝑆 ∈ LMod)
3915, 5, 3, 30lmodvscl 19724 . . . . . 6 ((𝑆 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ (𝐹𝑏) ∈ 𝑋) → (𝑎( ·𝑠𝑆)(𝐹𝑏)) ∈ 𝑋)
4038, 23, 29, 39syl3anc 1368 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → (𝑎( ·𝑠𝑆)(𝐹𝑏)) ∈ 𝑋)
41 f1ocnvfv 7032 . . . . 5 ((𝐹:𝑋1-1-onto𝑌 ∧ (𝑎( ·𝑠𝑆)(𝐹𝑏)) ∈ 𝑋) → ((𝐹‘(𝑎( ·𝑠𝑆)(𝐹𝑏))) = (𝑎( ·𝑠𝑇)𝑏) → (𝐹‘(𝑎( ·𝑠𝑇)𝑏)) = (𝑎( ·𝑠𝑆)(𝐹𝑏))))
4237, 40, 41syl2anc 587 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → ((𝐹‘(𝑎( ·𝑠𝑆)(𝐹𝑏))) = (𝑎( ·𝑠𝑇)𝑏) → (𝐹‘(𝑎( ·𝑠𝑇)𝑏)) = (𝑎( ·𝑠𝑆)(𝐹𝑏))))
4336, 42mpd 15 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏𝑌)) → (𝐹‘(𝑎( ·𝑠𝑇)𝑏)) = (𝑎( ·𝑠𝑆)(𝐹𝑏)))
441, 2, 3, 4, 5, 6, 8, 10, 13, 18, 43islmhmd 19884 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹 ∈ (𝑇 LMHom 𝑆))
4515, 1lmhmf 19879 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑋𝑌)
4645ffnd 6503 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 Fn 𝑋)
4746adantr 484 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑇 LMHom 𝑆)) → 𝐹 Fn 𝑋)
481, 15lmhmf 19879 . . . . 5 (𝐹 ∈ (𝑇 LMHom 𝑆) → 𝐹:𝑌𝑋)
4948adantl 485 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑇 LMHom 𝑆)) → 𝐹:𝑌𝑋)
5049ffnd 6503 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑇 LMHom 𝑆)) → 𝐹 Fn 𝑌)
51 dff1o4 6614 . . 3 (𝐹:𝑋1-1-onto𝑌 ↔ (𝐹 Fn 𝑋𝐹 Fn 𝑌))
5247, 50, 51sylanbrc 586 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑇 LMHom 𝑆)) → 𝐹:𝑋1-1-onto𝑌)
5344, 52impbida 800 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 LMHom 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  ccnv 5526   Fn wfn 6334  wf 6335  1-1-ontowf1o 6338  cfv 6339  (class class class)co 7155  Basecbs 16546  Scalarcsca 16631   ·𝑠 cvsca 16632   GrpHom cghm 18427  LModclmod 19707   LMHom clmhm 19864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-grp 18177  df-ghm 18428  df-lmod 19709  df-lmhm 19867
This theorem is referenced by:  islmim2  19911
  Copyright terms: Public domain W3C validator