Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstfrvunirn Structured version   Visualization version   GIF version

Theorem dstfrvunirn 31842
 Description: The limit of all preimage maps by the "less than or equal to" relation is the universe. (Contributed by Thierry Arnoux, 12-Feb-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
Assertion
Ref Expression
dstfrvunirn (𝜑 ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛)) = dom 𝑃)
Distinct variable groups:   𝑃,𝑛   𝑛,𝑋   𝜑,𝑛

Proof of Theorem dstfrvunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1red 10631 . . . . . . . . . 10 ((𝜑𝑥 dom 𝑃) → 1 ∈ ℝ)
2 dstfrv.1 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Prob)
3 dstfrv.2 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (rRndVar‘𝑃))
42, 3rrvvf 31812 . . . . . . . . . . 11 (𝜑𝑋: dom 𝑃⟶ℝ)
54ffvelrnda 6828 . . . . . . . . . 10 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ∈ ℝ)
61, 5ifcld 4470 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ)
7 breq2 5034 . . . . . . . . . 10 (1 = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → (1 ≤ 1 ↔ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
8 breq2 5034 . . . . . . . . . 10 ((𝑋𝑥) = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → (1 ≤ (𝑋𝑥) ↔ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
9 1le1 11257 . . . . . . . . . . 11 1 ≤ 1
109a1i 11 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → 1 ≤ 1)
111, 5lenltd 10775 . . . . . . . . . . 11 ((𝜑𝑥 dom 𝑃) → (1 ≤ (𝑋𝑥) ↔ ¬ (𝑋𝑥) < 1))
1211biimpar 481 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ ¬ (𝑋𝑥) < 1) → 1 ≤ (𝑋𝑥))
137, 8, 10, 12ifbothda 4462 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥)))
14 flge1nn 13186 . . . . . . . . 9 ((if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ ∧ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))) → (⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) ∈ ℕ)
156, 13, 14syl2anc 587 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → (⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) ∈ ℕ)
1615peano2nnd 11642 . . . . . . 7 ((𝜑𝑥 dom 𝑃) → ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℕ)
172adantr 484 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑃 ∈ Prob)
183adantr 484 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑋 ∈ (rRndVar‘𝑃))
1916nnred 11640 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℝ)
20 simpr 488 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑥 dom 𝑃)
21 breq2 5034 . . . . . . . . . 10 (1 = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → ((𝑋𝑥) ≤ 1 ↔ (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
22 breq2 5034 . . . . . . . . . 10 ((𝑋𝑥) = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → ((𝑋𝑥) ≤ (𝑋𝑥) ↔ (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
235adantr 484 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) ∈ ℝ)
24 1red 10631 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → 1 ∈ ℝ)
25 simpr 488 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) < 1)
2623, 24, 25ltled 10777 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) ≤ 1)
275leidd 11195 . . . . . . . . . . 11 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ (𝑋𝑥))
2827adantr 484 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ ¬ (𝑋𝑥) < 1) → (𝑋𝑥) ≤ (𝑋𝑥))
2921, 22, 26, 28ifbothda 4462 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥)))
30 fllep1 13166 . . . . . . . . . 10 (if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
316, 30syl 17 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
325, 6, 19, 29, 31letrd 10786 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
3317, 18, 19, 20, 32dstfrvel 31841 . . . . . . 7 ((𝜑𝑥 dom 𝑃) → 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1)))
34 oveq2 7143 . . . . . . . . 9 (𝑛 = ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) → (𝑋RV/𝑐𝑛) = (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1)))
3534eleq2d 2875 . . . . . . . 8 (𝑛 = ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) → (𝑥 ∈ (𝑋RV/𝑐𝑛) ↔ 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))))
3635rspcev 3571 . . . . . . 7 ((((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℕ ∧ 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))) → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
3716, 33, 36syl2anc 587 . . . . . 6 ((𝜑𝑥 dom 𝑃) → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
3837ex 416 . . . . 5 (𝜑 → (𝑥 dom 𝑃 → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛)))
392adantr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ Prob)
403adantr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ (rRndVar‘𝑃))
41 simpr 488 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4241nnred 11640 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
4339, 40, 42orvclteel 31840 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑋RV/𝑐𝑛) ∈ dom 𝑃)
44 elunii 4805 . . . . . . . 8 ((𝑥 ∈ (𝑋RV/𝑐𝑛) ∧ (𝑋RV/𝑐𝑛) ∈ dom 𝑃) → 𝑥 dom 𝑃)
4544expcom 417 . . . . . . 7 ((𝑋RV/𝑐𝑛) ∈ dom 𝑃 → (𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4643, 45syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4746rexlimdva 3243 . . . . 5 (𝜑 → (∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4838, 47impbid 215 . . . 4 (𝜑 → (𝑥 dom 𝑃 ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛)))
49 eliun 4885 . . . 4 (𝑥 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
5048, 49syl6bbr 292 . . 3 (𝜑 → (𝑥 dom 𝑃𝑥 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛)))
5150eqrdv 2796 . 2 (𝜑 dom 𝑃 = 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛))
52 ovex 7168 . . 3 (𝑋RV/𝑐𝑛) ∈ V
5352dfiun3 5802 . 2 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛) = ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛))
5451, 53eqtr2di 2850 1 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛)) = dom 𝑃)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∃wrex 3107  ifcif 4425  ∪ cuni 4800  ∪ ciun 4881   class class class wbr 5030   ↦ cmpt 5110  dom cdm 5519  ran crn 5520  ‘cfv 6324  (class class class)co 7135  ℝcr 10525  1c1 10527   + caddc 10529   < clt 10664   ≤ cle 10665  ℕcn 11625  ⌊cfl 13155  Probcprb 31775  rRndVarcrrv 31808  ∘RV/𝑐corvc 31823 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-ioo 12730  df-ioc 12731  df-fl 13157  df-topgen 16709  df-top 21499  df-bases 21551  df-cld 21624  df-esum 31397  df-siga 31478  df-sigagen 31508  df-brsiga 31551  df-meas 31565  df-mbfm 31619  df-prob 31776  df-rrv 31809  df-orvc 31824 This theorem is referenced by:  dstfrvclim1  31845
 Copyright terms: Public domain W3C validator