Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstfrvunirn Structured version   Visualization version   GIF version

Theorem dstfrvunirn 34453
Description: The limit of all preimage maps by the "less than or equal to" relation is the universe. (Contributed by Thierry Arnoux, 12-Feb-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
Assertion
Ref Expression
dstfrvunirn (𝜑 ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛)) = dom 𝑃)
Distinct variable groups:   𝑃,𝑛   𝑛,𝑋   𝜑,𝑛

Proof of Theorem dstfrvunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1red 11234 . . . . . . . . . 10 ((𝜑𝑥 dom 𝑃) → 1 ∈ ℝ)
2 dstfrv.1 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Prob)
3 dstfrv.2 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (rRndVar‘𝑃))
42, 3rrvvf 34422 . . . . . . . . . . 11 (𝜑𝑋: dom 𝑃⟶ℝ)
54ffvelcdmda 7073 . . . . . . . . . 10 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ∈ ℝ)
61, 5ifcld 4547 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ)
7 breq2 5123 . . . . . . . . . 10 (1 = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → (1 ≤ 1 ↔ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
8 breq2 5123 . . . . . . . . . 10 ((𝑋𝑥) = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → (1 ≤ (𝑋𝑥) ↔ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
9 1le1 11863 . . . . . . . . . . 11 1 ≤ 1
109a1i 11 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → 1 ≤ 1)
111, 5lenltd 11379 . . . . . . . . . . 11 ((𝜑𝑥 dom 𝑃) → (1 ≤ (𝑋𝑥) ↔ ¬ (𝑋𝑥) < 1))
1211biimpar 477 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ ¬ (𝑋𝑥) < 1) → 1 ≤ (𝑋𝑥))
137, 8, 10, 12ifbothda 4539 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥)))
14 flge1nn 13836 . . . . . . . . 9 ((if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ ∧ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))) → (⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) ∈ ℕ)
156, 13, 14syl2anc 584 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → (⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) ∈ ℕ)
1615peano2nnd 12255 . . . . . . 7 ((𝜑𝑥 dom 𝑃) → ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℕ)
172adantr 480 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑃 ∈ Prob)
183adantr 480 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑋 ∈ (rRndVar‘𝑃))
1916nnred 12253 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℝ)
20 simpr 484 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑥 dom 𝑃)
21 breq2 5123 . . . . . . . . . 10 (1 = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → ((𝑋𝑥) ≤ 1 ↔ (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
22 breq2 5123 . . . . . . . . . 10 ((𝑋𝑥) = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → ((𝑋𝑥) ≤ (𝑋𝑥) ↔ (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
235adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) ∈ ℝ)
24 1red 11234 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → 1 ∈ ℝ)
25 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) < 1)
2623, 24, 25ltled 11381 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) ≤ 1)
275leidd 11801 . . . . . . . . . . 11 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ (𝑋𝑥))
2827adantr 480 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ ¬ (𝑋𝑥) < 1) → (𝑋𝑥) ≤ (𝑋𝑥))
2921, 22, 26, 28ifbothda 4539 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥)))
30 fllep1 13816 . . . . . . . . . 10 (if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
316, 30syl 17 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
325, 6, 19, 29, 31letrd 11390 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
3317, 18, 19, 20, 32dstfrvel 34452 . . . . . . 7 ((𝜑𝑥 dom 𝑃) → 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1)))
34 oveq2 7411 . . . . . . . . 9 (𝑛 = ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) → (𝑋RV/𝑐𝑛) = (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1)))
3534eleq2d 2820 . . . . . . . 8 (𝑛 = ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) → (𝑥 ∈ (𝑋RV/𝑐𝑛) ↔ 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))))
3635rspcev 3601 . . . . . . 7 ((((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℕ ∧ 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))) → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
3716, 33, 36syl2anc 584 . . . . . 6 ((𝜑𝑥 dom 𝑃) → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
3837ex 412 . . . . 5 (𝜑 → (𝑥 dom 𝑃 → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛)))
392adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ Prob)
403adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ (rRndVar‘𝑃))
41 simpr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4241nnred 12253 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
4339, 40, 42orvclteel 34451 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑋RV/𝑐𝑛) ∈ dom 𝑃)
44 elunii 4888 . . . . . . . 8 ((𝑥 ∈ (𝑋RV/𝑐𝑛) ∧ (𝑋RV/𝑐𝑛) ∈ dom 𝑃) → 𝑥 dom 𝑃)
4544expcom 413 . . . . . . 7 ((𝑋RV/𝑐𝑛) ∈ dom 𝑃 → (𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4643, 45syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4746rexlimdva 3141 . . . . 5 (𝜑 → (∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4838, 47impbid 212 . . . 4 (𝜑 → (𝑥 dom 𝑃 ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛)))
49 eliun 4971 . . . 4 (𝑥 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
5048, 49bitr4di 289 . . 3 (𝜑 → (𝑥 dom 𝑃𝑥 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛)))
5150eqrdv 2733 . 2 (𝜑 dom 𝑃 = 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛))
52 ovex 7436 . . 3 (𝑋RV/𝑐𝑛) ∈ V
5352dfiun3 5949 . 2 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛) = ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛))
5451, 53eqtr2di 2787 1 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛)) = dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3060  ifcif 4500   cuni 4883   ciun 4967   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  cfv 6530  (class class class)co 7403  cr 11126  1c1 11128   + caddc 11130   < clt 11267  cle 11268  cn 12238  cfl 13805  Probcprb 34385  rRndVarcrrv 34418  RV/𝑐corvc 34434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-ac2 10475  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-acn 9954  df-ac 10128  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-ioo 13364  df-ioc 13365  df-fl 13807  df-topgen 17455  df-top 22830  df-bases 22882  df-cld 22955  df-esum 34005  df-siga 34086  df-sigagen 34116  df-brsiga 34159  df-meas 34173  df-mbfm 34227  df-prob 34386  df-rrv 34419  df-orvc 34435
This theorem is referenced by:  dstfrvclim1  34456
  Copyright terms: Public domain W3C validator