| Step | Hyp | Ref
| Expression |
| 1 | | 1red 11262 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → 1 ∈
ℝ) |
| 2 | | dstfrv.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ Prob) |
| 3 | | dstfrv.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| 4 | 2, 3 | rrvvf 34446 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) |
| 5 | 4 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → (𝑋‘𝑥) ∈ ℝ) |
| 6 | 1, 5 | ifcld 4572 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) ∈ ℝ) |
| 7 | | breq2 5147 |
. . . . . . . . . 10
⊢ (1 =
if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) → (1 ≤ 1 ↔ 1 ≤ if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)))) |
| 8 | | breq2 5147 |
. . . . . . . . . 10
⊢ ((𝑋‘𝑥) = if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) → (1 ≤ (𝑋‘𝑥) ↔ 1 ≤ if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)))) |
| 9 | | 1le1 11891 |
. . . . . . . . . . 11
⊢ 1 ≤
1 |
| 10 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) ∧ (𝑋‘𝑥) < 1) → 1 ≤ 1) |
| 11 | 1, 5 | lenltd 11407 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → (1 ≤ (𝑋‘𝑥) ↔ ¬ (𝑋‘𝑥) < 1)) |
| 12 | 11 | biimpar 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) ∧ ¬ (𝑋‘𝑥) < 1) → 1 ≤ (𝑋‘𝑥)) |
| 13 | 7, 8, 10, 12 | ifbothda 4564 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → 1 ≤ if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) |
| 14 | | flge1nn 13861 |
. . . . . . . . 9
⊢
((if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) ∈ ℝ ∧ 1 ≤ if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) → (⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) ∈ ℕ) |
| 15 | 6, 13, 14 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) →
(⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) ∈ ℕ) |
| 16 | 15 | peano2nnd 12283 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) →
((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1) ∈ ℕ) |
| 17 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → 𝑃 ∈ Prob) |
| 18 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → 𝑋 ∈ (rRndVar‘𝑃)) |
| 19 | 16 | nnred 12281 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) →
((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1) ∈ ℝ) |
| 20 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → 𝑥 ∈ ∪ dom 𝑃) |
| 21 | | breq2 5147 |
. . . . . . . . . 10
⊢ (1 =
if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) → ((𝑋‘𝑥) ≤ 1 ↔ (𝑋‘𝑥) ≤ if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)))) |
| 22 | | breq2 5147 |
. . . . . . . . . 10
⊢ ((𝑋‘𝑥) = if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) → ((𝑋‘𝑥) ≤ (𝑋‘𝑥) ↔ (𝑋‘𝑥) ≤ if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)))) |
| 23 | 5 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) ∧ (𝑋‘𝑥) < 1) → (𝑋‘𝑥) ∈ ℝ) |
| 24 | | 1red 11262 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) ∧ (𝑋‘𝑥) < 1) → 1 ∈
ℝ) |
| 25 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) ∧ (𝑋‘𝑥) < 1) → (𝑋‘𝑥) < 1) |
| 26 | 23, 24, 25 | ltled 11409 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) ∧ (𝑋‘𝑥) < 1) → (𝑋‘𝑥) ≤ 1) |
| 27 | 5 | leidd 11829 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → (𝑋‘𝑥) ≤ (𝑋‘𝑥)) |
| 28 | 27 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) ∧ ¬ (𝑋‘𝑥) < 1) → (𝑋‘𝑥) ≤ (𝑋‘𝑥)) |
| 29 | 21, 22, 26, 28 | ifbothda 4564 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → (𝑋‘𝑥) ≤ if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) |
| 30 | | fllep1 13841 |
. . . . . . . . . 10
⊢
(if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) ∈ ℝ → if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) ≤ ((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1)) |
| 31 | 6, 30 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) ≤ ((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1)) |
| 32 | 5, 6, 19, 29, 31 | letrd 11418 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → (𝑋‘𝑥) ≤ ((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1)) |
| 33 | 17, 18, 19, 20, 32 | dstfrvel 34476 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → 𝑥 ∈ (𝑋∘RV/𝑐 ≤
((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1))) |
| 34 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑛 = ((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1) → (𝑋∘RV/𝑐 ≤ 𝑛) = (𝑋∘RV/𝑐 ≤
((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1))) |
| 35 | 34 | eleq2d 2827 |
. . . . . . . 8
⊢ (𝑛 = ((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1) → (𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛) ↔ 𝑥 ∈ (𝑋∘RV/𝑐 ≤
((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1)))) |
| 36 | 35 | rspcev 3622 |
. . . . . . 7
⊢
((((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1) ∈ ℕ ∧ 𝑥 ∈ (𝑋∘RV/𝑐 ≤
((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1))) → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛)) |
| 37 | 16, 33, 36 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛)) |
| 38 | 37 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ∪ dom
𝑃 → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛))) |
| 39 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ Prob) |
| 40 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ (rRndVar‘𝑃)) |
| 41 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 42 | 41 | nnred 12281 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ) |
| 43 | 39, 40, 42 | orvclteel 34475 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑋∘RV/𝑐 ≤ 𝑛) ∈ dom 𝑃) |
| 44 | | elunii 4912 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛) ∧ (𝑋∘RV/𝑐 ≤ 𝑛) ∈ dom 𝑃) → 𝑥 ∈ ∪ dom
𝑃) |
| 45 | 44 | expcom 413 |
. . . . . . 7
⊢ ((𝑋∘RV/𝑐
≤ 𝑛) ∈ dom 𝑃 → (𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛) → 𝑥 ∈ ∪ dom
𝑃)) |
| 46 | 43, 45 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛) → 𝑥 ∈ ∪ dom
𝑃)) |
| 47 | 46 | rexlimdva 3155 |
. . . . 5
⊢ (𝜑 → (∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛) → 𝑥 ∈ ∪ dom
𝑃)) |
| 48 | 38, 47 | impbid 212 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ∪ dom
𝑃 ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛))) |
| 49 | | eliun 4995 |
. . . 4
⊢ (𝑥 ∈ ∪ 𝑛 ∈ ℕ (𝑋∘RV/𝑐 ≤ 𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛)) |
| 50 | 48, 49 | bitr4di 289 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ∪ dom
𝑃 ↔ 𝑥 ∈ ∪
𝑛 ∈ ℕ (𝑋∘RV/𝑐
≤ 𝑛))) |
| 51 | 50 | eqrdv 2735 |
. 2
⊢ (𝜑 → ∪ dom 𝑃 = ∪ 𝑛 ∈ ℕ (𝑋∘RV/𝑐
≤ 𝑛)) |
| 52 | | ovex 7464 |
. . 3
⊢ (𝑋∘RV/𝑐
≤ 𝑛) ∈
V |
| 53 | 52 | dfiun3 5980 |
. 2
⊢ ∪ 𝑛 ∈ ℕ (𝑋∘RV/𝑐 ≤ 𝑛) = ∪
ran (𝑛 ∈ ℕ
↦ (𝑋∘RV/𝑐 ≤ 𝑛)) |
| 54 | 51, 53 | eqtr2di 2794 |
1
⊢ (𝜑 → ∪ ran (𝑛 ∈ ℕ ↦ (𝑋∘RV/𝑐 ≤ 𝑛)) = ∪ dom 𝑃) |