Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstfrvunirn Structured version   Visualization version   GIF version

Theorem dstfrvunirn 31727
Description: The limit of all preimage maps by the "less than or equal to" relation is the universe. (Contributed by Thierry Arnoux, 12-Feb-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
Assertion
Ref Expression
dstfrvunirn (𝜑 ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛)) = dom 𝑃)
Distinct variable groups:   𝑃,𝑛   𝑛,𝑋   𝜑,𝑛

Proof of Theorem dstfrvunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1red 10636 . . . . . . . . . 10 ((𝜑𝑥 dom 𝑃) → 1 ∈ ℝ)
2 dstfrv.1 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Prob)
3 dstfrv.2 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (rRndVar‘𝑃))
42, 3rrvvf 31697 . . . . . . . . . . 11 (𝜑𝑋: dom 𝑃⟶ℝ)
54ffvelrnda 6846 . . . . . . . . . 10 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ∈ ℝ)
61, 5ifcld 4512 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ)
7 breq2 5063 . . . . . . . . . 10 (1 = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → (1 ≤ 1 ↔ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
8 breq2 5063 . . . . . . . . . 10 ((𝑋𝑥) = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → (1 ≤ (𝑋𝑥) ↔ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
9 1le1 11262 . . . . . . . . . . 11 1 ≤ 1
109a1i 11 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → 1 ≤ 1)
111, 5lenltd 10780 . . . . . . . . . . 11 ((𝜑𝑥 dom 𝑃) → (1 ≤ (𝑋𝑥) ↔ ¬ (𝑋𝑥) < 1))
1211biimpar 480 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ ¬ (𝑋𝑥) < 1) → 1 ≤ (𝑋𝑥))
137, 8, 10, 12ifbothda 4504 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥)))
14 flge1nn 13185 . . . . . . . . 9 ((if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ ∧ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))) → (⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) ∈ ℕ)
156, 13, 14syl2anc 586 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → (⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) ∈ ℕ)
1615peano2nnd 11649 . . . . . . 7 ((𝜑𝑥 dom 𝑃) → ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℕ)
172adantr 483 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑃 ∈ Prob)
183adantr 483 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑋 ∈ (rRndVar‘𝑃))
1916nnred 11647 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℝ)
20 simpr 487 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑥 dom 𝑃)
21 breq2 5063 . . . . . . . . . 10 (1 = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → ((𝑋𝑥) ≤ 1 ↔ (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
22 breq2 5063 . . . . . . . . . 10 ((𝑋𝑥) = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → ((𝑋𝑥) ≤ (𝑋𝑥) ↔ (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
235adantr 483 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) ∈ ℝ)
24 1red 10636 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → 1 ∈ ℝ)
25 simpr 487 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) < 1)
2623, 24, 25ltled 10782 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) ≤ 1)
275leidd 11200 . . . . . . . . . . 11 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ (𝑋𝑥))
2827adantr 483 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ ¬ (𝑋𝑥) < 1) → (𝑋𝑥) ≤ (𝑋𝑥))
2921, 22, 26, 28ifbothda 4504 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥)))
30 fllep1 13165 . . . . . . . . . 10 (if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
316, 30syl 17 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
325, 6, 19, 29, 31letrd 10791 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
3317, 18, 19, 20, 32dstfrvel 31726 . . . . . . 7 ((𝜑𝑥 dom 𝑃) → 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1)))
34 oveq2 7158 . . . . . . . . 9 (𝑛 = ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) → (𝑋RV/𝑐𝑛) = (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1)))
3534eleq2d 2898 . . . . . . . 8 (𝑛 = ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) → (𝑥 ∈ (𝑋RV/𝑐𝑛) ↔ 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))))
3635rspcev 3623 . . . . . . 7 ((((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℕ ∧ 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))) → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
3716, 33, 36syl2anc 586 . . . . . 6 ((𝜑𝑥 dom 𝑃) → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
3837ex 415 . . . . 5 (𝜑 → (𝑥 dom 𝑃 → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛)))
392adantr 483 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ Prob)
403adantr 483 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ (rRndVar‘𝑃))
41 simpr 487 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4241nnred 11647 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
4339, 40, 42orvclteel 31725 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑋RV/𝑐𝑛) ∈ dom 𝑃)
44 elunii 4837 . . . . . . . 8 ((𝑥 ∈ (𝑋RV/𝑐𝑛) ∧ (𝑋RV/𝑐𝑛) ∈ dom 𝑃) → 𝑥 dom 𝑃)
4544expcom 416 . . . . . . 7 ((𝑋RV/𝑐𝑛) ∈ dom 𝑃 → (𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4643, 45syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4746rexlimdva 3284 . . . . 5 (𝜑 → (∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4838, 47impbid 214 . . . 4 (𝜑 → (𝑥 dom 𝑃 ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛)))
49 eliun 4916 . . . 4 (𝑥 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
5048, 49syl6bbr 291 . . 3 (𝜑 → (𝑥 dom 𝑃𝑥 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛)))
5150eqrdv 2819 . 2 (𝜑 dom 𝑃 = 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛))
52 ovex 7183 . . 3 (𝑋RV/𝑐𝑛) ∈ V
5352dfiun3 5832 . 2 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛) = ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛))
5451, 53syl6req 2873 1 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛)) = dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wrex 3139  ifcif 4467   cuni 4832   ciun 4912   class class class wbr 5059  cmpt 5139  dom cdm 5550  ran crn 5551  cfv 6350  (class class class)co 7150  cr 10530  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cn 11632  cfl 13154  Probcprb 31660  rRndVarcrrv 31693  RV/𝑐corvc 31708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-ac2 9879  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-ac 9536  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-ioo 12736  df-ioc 12737  df-fl 13156  df-topgen 16711  df-top 21496  df-bases 21548  df-cld 21621  df-esum 31282  df-siga 31363  df-sigagen 31393  df-brsiga 31436  df-meas 31450  df-mbfm 31504  df-prob 31661  df-rrv 31694  df-orvc 31709
This theorem is referenced by:  dstfrvclim1  31730
  Copyright terms: Public domain W3C validator