Step | Hyp | Ref
| Expression |
1 | | 1red 10964 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → 1 ∈
ℝ) |
2 | | dstfrv.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ Prob) |
3 | | dstfrv.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
4 | 2, 3 | rrvvf 32397 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) |
5 | 4 | ffvelrnda 6954 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → (𝑋‘𝑥) ∈ ℝ) |
6 | 1, 5 | ifcld 4506 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) ∈ ℝ) |
7 | | breq2 5078 |
. . . . . . . . . 10
⊢ (1 =
if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) → (1 ≤ 1 ↔ 1 ≤ if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)))) |
8 | | breq2 5078 |
. . . . . . . . . 10
⊢ ((𝑋‘𝑥) = if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) → (1 ≤ (𝑋‘𝑥) ↔ 1 ≤ if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)))) |
9 | | 1le1 11591 |
. . . . . . . . . . 11
⊢ 1 ≤
1 |
10 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) ∧ (𝑋‘𝑥) < 1) → 1 ≤ 1) |
11 | 1, 5 | lenltd 11109 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → (1 ≤ (𝑋‘𝑥) ↔ ¬ (𝑋‘𝑥) < 1)) |
12 | 11 | biimpar 478 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) ∧ ¬ (𝑋‘𝑥) < 1) → 1 ≤ (𝑋‘𝑥)) |
13 | 7, 8, 10, 12 | ifbothda 4498 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → 1 ≤ if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) |
14 | | flge1nn 13529 |
. . . . . . . . 9
⊢
((if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) ∈ ℝ ∧ 1 ≤ if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) → (⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) ∈ ℕ) |
15 | 6, 13, 14 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) →
(⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) ∈ ℕ) |
16 | 15 | peano2nnd 11978 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) →
((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1) ∈ ℕ) |
17 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → 𝑃 ∈ Prob) |
18 | 3 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → 𝑋 ∈ (rRndVar‘𝑃)) |
19 | 16 | nnred 11976 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) →
((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1) ∈ ℝ) |
20 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → 𝑥 ∈ ∪ dom 𝑃) |
21 | | breq2 5078 |
. . . . . . . . . 10
⊢ (1 =
if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) → ((𝑋‘𝑥) ≤ 1 ↔ (𝑋‘𝑥) ≤ if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)))) |
22 | | breq2 5078 |
. . . . . . . . . 10
⊢ ((𝑋‘𝑥) = if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) → ((𝑋‘𝑥) ≤ (𝑋‘𝑥) ↔ (𝑋‘𝑥) ≤ if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)))) |
23 | 5 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) ∧ (𝑋‘𝑥) < 1) → (𝑋‘𝑥) ∈ ℝ) |
24 | | 1red 10964 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) ∧ (𝑋‘𝑥) < 1) → 1 ∈
ℝ) |
25 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) ∧ (𝑋‘𝑥) < 1) → (𝑋‘𝑥) < 1) |
26 | 23, 24, 25 | ltled 11111 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) ∧ (𝑋‘𝑥) < 1) → (𝑋‘𝑥) ≤ 1) |
27 | 5 | leidd 11529 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → (𝑋‘𝑥) ≤ (𝑋‘𝑥)) |
28 | 27 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) ∧ ¬ (𝑋‘𝑥) < 1) → (𝑋‘𝑥) ≤ (𝑋‘𝑥)) |
29 | 21, 22, 26, 28 | ifbothda 4498 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → (𝑋‘𝑥) ≤ if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) |
30 | | fllep1 13509 |
. . . . . . . . . 10
⊢
(if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) ∈ ℝ → if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) ≤ ((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1)) |
31 | 6, 30 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥)) ≤ ((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1)) |
32 | 5, 6, 19, 29, 31 | letrd 11120 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → (𝑋‘𝑥) ≤ ((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1)) |
33 | 17, 18, 19, 20, 32 | dstfrvel 32426 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → 𝑥 ∈ (𝑋∘RV/𝑐 ≤
((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1))) |
34 | | oveq2 7276 |
. . . . . . . . 9
⊢ (𝑛 = ((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1) → (𝑋∘RV/𝑐 ≤ 𝑛) = (𝑋∘RV/𝑐 ≤
((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1))) |
35 | 34 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑛 = ((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1) → (𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛) ↔ 𝑥 ∈ (𝑋∘RV/𝑐 ≤
((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1)))) |
36 | 35 | rspcev 3560 |
. . . . . . 7
⊢
((((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1) ∈ ℕ ∧ 𝑥 ∈ (𝑋∘RV/𝑐 ≤
((⌊‘if((𝑋‘𝑥) < 1, 1, (𝑋‘𝑥))) + 1))) → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛)) |
37 | 16, 33, 36 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ dom
𝑃) → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛)) |
38 | 37 | ex 413 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ∪ dom
𝑃 → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛))) |
39 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ Prob) |
40 | 3 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ (rRndVar‘𝑃)) |
41 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
42 | 41 | nnred 11976 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ) |
43 | 39, 40, 42 | orvclteel 32425 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑋∘RV/𝑐 ≤ 𝑛) ∈ dom 𝑃) |
44 | | elunii 4845 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛) ∧ (𝑋∘RV/𝑐 ≤ 𝑛) ∈ dom 𝑃) → 𝑥 ∈ ∪ dom
𝑃) |
45 | 44 | expcom 414 |
. . . . . . 7
⊢ ((𝑋∘RV/𝑐
≤ 𝑛) ∈ dom 𝑃 → (𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛) → 𝑥 ∈ ∪ dom
𝑃)) |
46 | 43, 45 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛) → 𝑥 ∈ ∪ dom
𝑃)) |
47 | 46 | rexlimdva 3211 |
. . . . 5
⊢ (𝜑 → (∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛) → 𝑥 ∈ ∪ dom
𝑃)) |
48 | 38, 47 | impbid 211 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ∪ dom
𝑃 ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛))) |
49 | | eliun 4929 |
. . . 4
⊢ (𝑥 ∈ ∪ 𝑛 ∈ ℕ (𝑋∘RV/𝑐 ≤ 𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋∘RV/𝑐 ≤ 𝑛)) |
50 | 48, 49 | bitr4di 289 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ∪ dom
𝑃 ↔ 𝑥 ∈ ∪
𝑛 ∈ ℕ (𝑋∘RV/𝑐
≤ 𝑛))) |
51 | 50 | eqrdv 2736 |
. 2
⊢ (𝜑 → ∪ dom 𝑃 = ∪ 𝑛 ∈ ℕ (𝑋∘RV/𝑐
≤ 𝑛)) |
52 | | ovex 7301 |
. . 3
⊢ (𝑋∘RV/𝑐
≤ 𝑛) ∈
V |
53 | 52 | dfiun3 5869 |
. 2
⊢ ∪ 𝑛 ∈ ℕ (𝑋∘RV/𝑐 ≤ 𝑛) = ∪
ran (𝑛 ∈ ℕ
↦ (𝑋∘RV/𝑐 ≤ 𝑛)) |
54 | 51, 53 | eqtr2di 2795 |
1
⊢ (𝜑 → ∪ ran (𝑛 ∈ ℕ ↦ (𝑋∘RV/𝑐 ≤ 𝑛)) = ∪ dom 𝑃) |