MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnbgr3 Structured version   Visualization version   GIF version

Theorem dfnbgr3 28328
Description: Alternate definition of the neighbors of a vertex using the edge function instead of the edges themselves (see also nbgrval 28326). (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 25-Oct-2020.) (Revised by AV, 21-Mar-2021.)
Hypotheses
Ref Expression
dfnbgr3.v 𝑉 = (Vtx‘𝐺)
dfnbgr3.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
dfnbgr3 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
Distinct variable groups:   𝑛,𝐺   𝑖,𝐼,𝑛   𝑖,𝑁,𝑛   𝑛,𝑉
Allowed substitution hints:   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem dfnbgr3
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 dfnbgr3.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2737 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2nbgrval 28326 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
43adantr 482 . 2 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
5 edgval 28042 . . . . . 6 (Edg‘𝐺) = ran (iEdg‘𝐺)
6 dfnbgr3.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
76eqcomi 2746 . . . . . . 7 (iEdg‘𝐺) = 𝐼
87rneqi 5897 . . . . . 6 ran (iEdg‘𝐺) = ran 𝐼
95, 8eqtri 2765 . . . . 5 (Edg‘𝐺) = ran 𝐼
109rexeqi 3315 . . . 4 (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒)
11 funfn 6536 . . . . . . 7 (Fun 𝐼𝐼 Fn dom 𝐼)
1211biimpi 215 . . . . . 6 (Fun 𝐼𝐼 Fn dom 𝐼)
1312adantl 483 . . . . 5 ((𝑁𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼)
14 sseq2 3975 . . . . . 6 (𝑒 = (𝐼𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼𝑖)))
1514rexrn 7042 . . . . 5 (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1613, 15syl 17 . . . 4 ((𝑁𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1710, 16bitrid 283 . . 3 ((𝑁𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1817rabbidv 3418 . 2 ((𝑁𝑉 ∧ Fun 𝐼) → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
194, 18eqtrd 2777 1 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wrex 3074  {crab 3410  cdif 3912  wss 3915  {csn 4591  {cpr 4593  dom cdm 5638  ran crn 5639  Fun wfun 6495   Fn wfn 6496  cfv 6501  (class class class)co 7362  Vtxcvtx 27989  iEdgciedg 27990  Edgcedg 28040   NeighbVtx cnbgr 28322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6453  df-fun 6503  df-fn 6504  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-edg 28041  df-nbgr 28323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator