Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfnbgr3 | Structured version Visualization version GIF version |
Description: Alternate definition of the neighbors of a vertex using the edge function instead of the edges themselves (see also nbgrval 27703). (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 25-Oct-2020.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
dfnbgr3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
dfnbgr3.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
dfnbgr3 | ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnbgr3.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2738 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | nbgrval 27703 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) |
4 | 3 | adantr 481 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) |
5 | edgval 27419 | . . . . . 6 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
6 | dfnbgr3.i | . . . . . . . 8 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | 6 | eqcomi 2747 | . . . . . . 7 ⊢ (iEdg‘𝐺) = 𝐼 |
8 | 7 | rneqi 5846 | . . . . . 6 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
9 | 5, 8 | eqtri 2766 | . . . . 5 ⊢ (Edg‘𝐺) = ran 𝐼 |
10 | 9 | rexeqi 3347 | . . . 4 ⊢ (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒) |
11 | funfn 6464 | . . . . . . 7 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
12 | 11 | biimpi 215 | . . . . . 6 ⊢ (Fun 𝐼 → 𝐼 Fn dom 𝐼) |
13 | 12 | adantl 482 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼) |
14 | sseq2 3947 | . . . . . 6 ⊢ (𝑒 = (𝐼‘𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼‘𝑖))) | |
15 | 14 | rexrn 6963 | . . . . 5 ⊢ (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
16 | 13, 15 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
17 | 10, 16 | bitrid 282 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
18 | 17 | rabbidv 3414 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
19 | 4, 18 | eqtrd 2778 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 {crab 3068 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 {cpr 4563 dom cdm 5589 ran crn 5590 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 Vtxcvtx 27366 iEdgciedg 27367 Edgcedg 27417 NeighbVtx cnbgr 27699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-edg 27418 df-nbgr 27700 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |