MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnbgr3 Structured version   Visualization version   GIF version

Theorem dfnbgr3 29283
Description: Alternate definition of the neighbors of a vertex using the edge function instead of the edges themselves (see also nbgrval 29281). (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 25-Oct-2020.) (Revised by AV, 21-Mar-2021.)
Hypotheses
Ref Expression
dfnbgr3.v 𝑉 = (Vtx‘𝐺)
dfnbgr3.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
dfnbgr3 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
Distinct variable groups:   𝑛,𝐺   𝑖,𝐼,𝑛   𝑖,𝑁,𝑛   𝑛,𝑉
Allowed substitution hints:   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem dfnbgr3
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 dfnbgr3.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2729 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2nbgrval 29281 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
43adantr 480 . 2 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
5 edgval 28994 . . . . . 6 (Edg‘𝐺) = ran (iEdg‘𝐺)
6 dfnbgr3.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
76eqcomi 2738 . . . . . . 7 (iEdg‘𝐺) = 𝐼
87rneqi 5879 . . . . . 6 ran (iEdg‘𝐺) = ran 𝐼
95, 8eqtri 2752 . . . . 5 (Edg‘𝐺) = ran 𝐼
109rexeqi 3288 . . . 4 (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒)
11 funfn 6512 . . . . . . 7 (Fun 𝐼𝐼 Fn dom 𝐼)
1211biimpi 216 . . . . . 6 (Fun 𝐼𝐼 Fn dom 𝐼)
1312adantl 481 . . . . 5 ((𝑁𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼)
14 sseq2 3962 . . . . . 6 (𝑒 = (𝐼𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼𝑖)))
1514rexrn 7021 . . . . 5 (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1613, 15syl 17 . . . 4 ((𝑁𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1710, 16bitrid 283 . . 3 ((𝑁𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1817rabbidv 3402 . 2 ((𝑁𝑉 ∧ Fun 𝐼) → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
194, 18eqtrd 2764 1 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3394  cdif 3900  wss 3903  {csn 4577  {cpr 4579  dom cdm 5619  ran crn 5620  Fun wfun 6476   Fn wfn 6477  cfv 6482  (class class class)co 7349  Vtxcvtx 28941  iEdgciedg 28942  Edgcedg 28992   NeighbVtx cnbgr 29277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-edg 28993  df-nbgr 29278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator