| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfnbgr3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the neighbors of a vertex using the edge function instead of the edges themselves (see also nbgrval 29354). (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 25-Oct-2020.) (Revised by AV, 21-Mar-2021.) |
| Ref | Expression |
|---|---|
| dfnbgr3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| dfnbgr3.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| dfnbgr3 | ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnbgr3.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2736 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | nbgrval 29354 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) |
| 5 | edgval 29067 | . . . . . 6 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 6 | dfnbgr3.i | . . . . . . . 8 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 7 | 6 | eqcomi 2745 | . . . . . . 7 ⊢ (iEdg‘𝐺) = 𝐼 |
| 8 | 7 | rneqi 5947 | . . . . . 6 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
| 9 | 5, 8 | eqtri 2764 | . . . . 5 ⊢ (Edg‘𝐺) = ran 𝐼 |
| 10 | 9 | rexeqi 3324 | . . . 4 ⊢ (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒) |
| 11 | funfn 6595 | . . . . . . 7 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
| 12 | 11 | biimpi 216 | . . . . . 6 ⊢ (Fun 𝐼 → 𝐼 Fn dom 𝐼) |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼) |
| 14 | sseq2 4009 | . . . . . 6 ⊢ (𝑒 = (𝐼‘𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼‘𝑖))) | |
| 15 | 14 | rexrn 7106 | . . . . 5 ⊢ (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
| 16 | 13, 15 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
| 17 | 10, 16 | bitrid 283 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
| 18 | 17 | rabbidv 3443 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
| 19 | 4, 18 | eqtrd 2776 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 {crab 3435 ∖ cdif 3947 ⊆ wss 3950 {csn 4625 {cpr 4627 dom cdm 5684 ran crn 5685 Fun wfun 6554 Fn wfn 6555 ‘cfv 6560 (class class class)co 7432 Vtxcvtx 29014 iEdgciedg 29015 Edgcedg 29065 NeighbVtx cnbgr 29350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-edg 29066 df-nbgr 29351 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |