MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnbgr3 Structured version   Visualization version   GIF version

Theorem dfnbgr3 27034
Description: Alternate definition of the neighbors of a vertex using the edge function instead of the edges themselves (see also nbgrval 27032). (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 25-Oct-2020.) (Revised by AV, 21-Mar-2021.)
Hypotheses
Ref Expression
dfnbgr3.v 𝑉 = (Vtx‘𝐺)
dfnbgr3.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
dfnbgr3 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
Distinct variable groups:   𝑛,𝐺   𝑖,𝐼,𝑛   𝑖,𝑁,𝑛   𝑛,𝑉
Allowed substitution hints:   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem dfnbgr3
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 dfnbgr3.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2826 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2nbgrval 27032 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
43adantr 481 . 2 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
5 edgval 26748 . . . . . 6 (Edg‘𝐺) = ran (iEdg‘𝐺)
6 dfnbgr3.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
76eqcomi 2835 . . . . . . 7 (iEdg‘𝐺) = 𝐼
87rneqi 5806 . . . . . 6 ran (iEdg‘𝐺) = ran 𝐼
95, 8eqtri 2849 . . . . 5 (Edg‘𝐺) = ran 𝐼
109rexeqi 3420 . . . 4 (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒)
11 funfn 6382 . . . . . . 7 (Fun 𝐼𝐼 Fn dom 𝐼)
1211biimpi 217 . . . . . 6 (Fun 𝐼𝐼 Fn dom 𝐼)
1312adantl 482 . . . . 5 ((𝑁𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼)
14 sseq2 3997 . . . . . 6 (𝑒 = (𝐼𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼𝑖)))
1514rexrn 6849 . . . . 5 (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1613, 15syl 17 . . . 4 ((𝑁𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1710, 16syl5bb 284 . . 3 ((𝑁𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1817rabbidv 3486 . 2 ((𝑁𝑉 ∧ Fun 𝐼) → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
194, 18eqtrd 2861 1 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wrex 3144  {crab 3147  cdif 3937  wss 3940  {csn 4564  {cpr 4566  dom cdm 5554  ran crn 5555  Fun wfun 6346   Fn wfn 6347  cfv 6352  (class class class)co 7148  Vtxcvtx 26695  iEdgciedg 26696  Edgcedg 26746   NeighbVtx cnbgr 27028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-iota 6312  df-fun 6354  df-fn 6355  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-edg 26747  df-nbgr 27029
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator