![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfnbgr3 | Structured version Visualization version GIF version |
Description: Alternate definition of the neighbors of a vertex using the edge function instead of the edges themselves (see also nbgrval 28624). (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 25-Oct-2020.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
dfnbgr3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
dfnbgr3.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
dfnbgr3 | ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnbgr3.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2733 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | nbgrval 28624 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) |
4 | 3 | adantr 482 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) |
5 | edgval 28340 | . . . . . 6 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
6 | dfnbgr3.i | . . . . . . . 8 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | 6 | eqcomi 2742 | . . . . . . 7 ⊢ (iEdg‘𝐺) = 𝐼 |
8 | 7 | rneqi 5937 | . . . . . 6 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
9 | 5, 8 | eqtri 2761 | . . . . 5 ⊢ (Edg‘𝐺) = ran 𝐼 |
10 | 9 | rexeqi 3325 | . . . 4 ⊢ (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒) |
11 | funfn 6579 | . . . . . . 7 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
12 | 11 | biimpi 215 | . . . . . 6 ⊢ (Fun 𝐼 → 𝐼 Fn dom 𝐼) |
13 | 12 | adantl 483 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼) |
14 | sseq2 4009 | . . . . . 6 ⊢ (𝑒 = (𝐼‘𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼‘𝑖))) | |
15 | 14 | rexrn 7089 | . . . . 5 ⊢ (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
16 | 13, 15 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
17 | 10, 16 | bitrid 283 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
18 | 17 | rabbidv 3441 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
19 | 4, 18 | eqtrd 2773 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 {crab 3433 ∖ cdif 3946 ⊆ wss 3949 {csn 4629 {cpr 4631 dom cdm 5677 ran crn 5678 Fun wfun 6538 Fn wfn 6539 ‘cfv 6544 (class class class)co 7409 Vtxcvtx 28287 iEdgciedg 28288 Edgcedg 28338 NeighbVtx cnbgr 28620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-edg 28339 df-nbgr 28621 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |