MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnbgr3 Structured version   Visualization version   GIF version

Theorem dfnbgr3 29241
Description: Alternate definition of the neighbors of a vertex using the edge function instead of the edges themselves (see also nbgrval 29239). (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 25-Oct-2020.) (Revised by AV, 21-Mar-2021.)
Hypotheses
Ref Expression
dfnbgr3.v 𝑉 = (Vtx‘𝐺)
dfnbgr3.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
dfnbgr3 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
Distinct variable groups:   𝑛,𝐺   𝑖,𝐼,𝑛   𝑖,𝑁,𝑛   𝑛,𝑉
Allowed substitution hints:   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem dfnbgr3
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 dfnbgr3.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2729 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2nbgrval 29239 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
43adantr 480 . 2 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
5 edgval 28952 . . . . . 6 (Edg‘𝐺) = ran (iEdg‘𝐺)
6 dfnbgr3.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
76eqcomi 2738 . . . . . . 7 (iEdg‘𝐺) = 𝐼
87rneqi 5890 . . . . . 6 ran (iEdg‘𝐺) = ran 𝐼
95, 8eqtri 2752 . . . . 5 (Edg‘𝐺) = ran 𝐼
109rexeqi 3295 . . . 4 (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒)
11 funfn 6530 . . . . . . 7 (Fun 𝐼𝐼 Fn dom 𝐼)
1211biimpi 216 . . . . . 6 (Fun 𝐼𝐼 Fn dom 𝐼)
1312adantl 481 . . . . 5 ((𝑁𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼)
14 sseq2 3970 . . . . . 6 (𝑒 = (𝐼𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼𝑖)))
1514rexrn 7041 . . . . 5 (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1613, 15syl 17 . . . 4 ((𝑁𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1710, 16bitrid 283 . . 3 ((𝑁𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1817rabbidv 3410 . 2 ((𝑁𝑉 ∧ Fun 𝐼) → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
194, 18eqtrd 2764 1 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3402  cdif 3908  wss 3911  {csn 4585  {cpr 4587  dom cdm 5631  ran crn 5632  Fun wfun 6493   Fn wfn 6494  cfv 6499  (class class class)co 7369  Vtxcvtx 28899  iEdgciedg 28900  Edgcedg 28950   NeighbVtx cnbgr 29235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-edg 28951  df-nbgr 29236
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator