Step | Hyp | Ref
| Expression |
1 | | rabdif 4310 |
. . 3
⊢ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁}) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} |
2 | | 3anass 1092 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ↔ (𝑣 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
3 | 2 | biimpri 227 |
. . . . . . . . . . . 12
⊢ ((𝑣 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) → (𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) |
4 | 3 | orcd 871 |
. . . . . . . . . . 11
⊢ ((𝑣 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) → ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))) |
5 | 4 | ex 411 |
. . . . . . . . . 10
⊢ (𝑣 ≠ 𝑁 → ((𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) → ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))) |
6 | | 3simpc 1147 |
. . . . . . . . . . . 12
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) → (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) |
7 | 6 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑣 ≠ 𝑁 → ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) → (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
8 | | eqneqall 2941 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑁 → (𝑣 ≠ 𝑁 → (𝑒 = {𝑣} → (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)))) |
9 | 8 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑣 ≠ 𝑁 → (𝑣 = 𝑁 → (𝑒 = {𝑣} → (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)))) |
10 | 9 | impd 409 |
. . . . . . . . . . 11
⊢ (𝑣 ≠ 𝑁 → ((𝑣 = 𝑁 ∧ 𝑒 = {𝑣}) → (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
11 | 7, 10 | jaod 857 |
. . . . . . . . . 10
⊢ (𝑣 ≠ 𝑁 → (((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})) → (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
12 | 5, 11 | impbid 211 |
. . . . . . . . 9
⊢ (𝑣 ≠ 𝑁 → ((𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ↔ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))) |
13 | 12 | rexbidv 3169 |
. . . . . . . 8
⊢ (𝑣 ≠ 𝑁 → (∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ↔ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))) |
14 | 13 | anbi2d 628 |
. . . . . . 7
⊢ (𝑣 ≠ 𝑁 → ((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) ↔ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))))) |
15 | 14 | pm5.32ri 574 |
. . . . . 6
⊢ (((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) ∧ 𝑣 ≠ 𝑁) ↔ ((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))) ∧ 𝑣 ≠ 𝑁)) |
16 | 15 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈ 𝑉 → (((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) ∧ 𝑣 ≠ 𝑁) ↔ ((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))) ∧ 𝑣 ≠ 𝑁))) |
17 | | eldif 3956 |
. . . . . 6
⊢ (𝑣 ∈ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁}) ↔ (𝑣 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∧ ¬ 𝑣 ∈ {𝑁})) |
18 | | elequ1 2106 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑣 → (𝑛 ∈ 𝑒 ↔ 𝑣 ∈ 𝑒)) |
19 | 18 | anbi2d 628 |
. . . . . . . . 9
⊢ (𝑛 = 𝑣 → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
20 | 19 | rexbidv 3169 |
. . . . . . . 8
⊢ (𝑛 = 𝑣 → (∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
21 | 20 | elrab 3680 |
. . . . . . 7
⊢ (𝑣 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ↔ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
22 | | velsn 4639 |
. . . . . . . 8
⊢ (𝑣 ∈ {𝑁} ↔ 𝑣 = 𝑁) |
23 | 22 | necon3bbii 2978 |
. . . . . . 7
⊢ (¬
𝑣 ∈ {𝑁} ↔ 𝑣 ≠ 𝑁) |
24 | 21, 23 | anbi12i 626 |
. . . . . 6
⊢ ((𝑣 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∧ ¬ 𝑣 ∈ {𝑁}) ↔ ((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) ∧ 𝑣 ≠ 𝑁)) |
25 | 17, 24 | bitri 274 |
. . . . 5
⊢ (𝑣 ∈ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁}) ↔ ((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒)) ∧ 𝑣 ≠ 𝑁)) |
26 | | eldif 3956 |
. . . . . 6
⊢ (𝑣 ∈ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∖ {𝑁}) ↔ (𝑣 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∧ ¬ 𝑣 ∈ {𝑁})) |
27 | | neeq1 2993 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑣 → (𝑛 ≠ 𝑁 ↔ 𝑣 ≠ 𝑁)) |
28 | 27, 18 | 3anbi13d 1435 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑣 → ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ (𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒))) |
29 | | eqeq1 2730 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑣 → (𝑛 = 𝑁 ↔ 𝑣 = 𝑁)) |
30 | | sneq 4633 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑣 → {𝑛} = {𝑣}) |
31 | 30 | eqeq2d 2737 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑣 → (𝑒 = {𝑛} ↔ 𝑒 = {𝑣})) |
32 | 29, 31 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑣 → ((𝑛 = 𝑁 ∧ 𝑒 = {𝑛}) ↔ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))) |
33 | 28, 32 | orbi12d 916 |
. . . . . . . . 9
⊢ (𝑛 = 𝑣 → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ↔ ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))) |
34 | 33 | rexbidv 3169 |
. . . . . . . 8
⊢ (𝑛 = 𝑣 → (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ↔ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))) |
35 | 34 | elrab 3680 |
. . . . . . 7
⊢ (𝑣 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ↔ (𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣})))) |
36 | 35, 23 | anbi12i 626 |
. . . . . 6
⊢ ((𝑣 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∧ ¬ 𝑣 ∈ {𝑁}) ↔ ((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))) ∧ 𝑣 ≠ 𝑁)) |
37 | 26, 36 | bitri 274 |
. . . . 5
⊢ (𝑣 ∈ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∖ {𝑁}) ↔ ((𝑣 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑣 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑣 ∈ 𝑒) ∨ (𝑣 = 𝑁 ∧ 𝑒 = {𝑣}))) ∧ 𝑣 ≠ 𝑁)) |
38 | 16, 25, 37 | 3bitr4g 313 |
. . . 4
⊢ (𝑁 ∈ 𝑉 → (𝑣 ∈ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁}) ↔ 𝑣 ∈ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∖ {𝑁}))) |
39 | 38 | eqrdv 2724 |
. . 3
⊢ (𝑁 ∈ 𝑉 → ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} ∖ {𝑁}) = ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∖ {𝑁})) |
40 | 1, 39 | eqtr3id 2780 |
. 2
⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} = ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∖ {𝑁})) |
41 | | dfvopnbgr2.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
42 | | dfvopnbgr2.e |
. . 3
⊢ 𝐸 = (Edg‘𝐺) |
43 | 41, 42 | dfnbgr2 29270 |
. 2
⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
44 | | dfvopnbgr2.u |
. . . 4
⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} |
45 | 41, 42, 44 | dfvopnbgr2 47456 |
. . 3
⊢ (𝑁 ∈ 𝑉 → 𝑈 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}) |
46 | 45 | difeq1d 4117 |
. 2
⊢ (𝑁 ∈ 𝑉 → (𝑈 ∖ {𝑁}) = ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∖ {𝑁})) |
47 | 40, 43, 46 | 3eqtr4d 2776 |
1
⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑈 ∖ {𝑁})) |