| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzind4s | Structured version Visualization version GIF version | ||
| Description: Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.) |
| Ref | Expression |
|---|---|
| uzind4s.1 | ⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑) |
| uzind4s.2 | ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) |
| Ref | Expression |
|---|---|
| uzind4s | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑘]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3739 | . 2 ⊢ (𝑗 = 𝑀 → ([𝑗 / 𝑘]𝜑 ↔ [𝑀 / 𝑘]𝜑)) | |
| 2 | sbequ 2086 | . 2 ⊢ (𝑗 = 𝑚 → ([𝑗 / 𝑘]𝜑 ↔ [𝑚 / 𝑘]𝜑)) | |
| 3 | dfsbcq2 3739 | . 2 ⊢ (𝑗 = (𝑚 + 1) → ([𝑗 / 𝑘]𝜑 ↔ [(𝑚 + 1) / 𝑘]𝜑)) | |
| 4 | dfsbcq2 3739 | . 2 ⊢ (𝑗 = 𝑁 → ([𝑗 / 𝑘]𝜑 ↔ [𝑁 / 𝑘]𝜑)) | |
| 5 | uzind4s.1 | . 2 ⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑) | |
| 6 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑘 𝑚 ∈ (ℤ≥‘𝑀) | |
| 7 | nfs1v 2159 | . . . . 5 ⊢ Ⅎ𝑘[𝑚 / 𝑘]𝜑 | |
| 8 | nfsbc1v 3756 | . . . . 5 ⊢ Ⅎ𝑘[(𝑚 + 1) / 𝑘]𝜑 | |
| 9 | 7, 8 | nfim 1897 | . . . 4 ⊢ Ⅎ𝑘([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑) |
| 10 | 6, 9 | nfim 1897 | . . 3 ⊢ Ⅎ𝑘(𝑚 ∈ (ℤ≥‘𝑀) → ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑)) |
| 11 | eleq1w 2814 | . . . 4 ⊢ (𝑘 = 𝑚 → (𝑘 ∈ (ℤ≥‘𝑀) ↔ 𝑚 ∈ (ℤ≥‘𝑀))) | |
| 12 | sbequ12 2254 | . . . . 5 ⊢ (𝑘 = 𝑚 → (𝜑 ↔ [𝑚 / 𝑘]𝜑)) | |
| 13 | oveq1 7359 | . . . . . 6 ⊢ (𝑘 = 𝑚 → (𝑘 + 1) = (𝑚 + 1)) | |
| 14 | 13 | sbceq1d 3741 | . . . . 5 ⊢ (𝑘 = 𝑚 → ([(𝑘 + 1) / 𝑘]𝜑 ↔ [(𝑚 + 1) / 𝑘]𝜑)) |
| 15 | 12, 14 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑚 → ((𝜑 → [(𝑘 + 1) / 𝑘]𝜑) ↔ ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑))) |
| 16 | 11, 15 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑚 → ((𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) ↔ (𝑚 ∈ (ℤ≥‘𝑀) → ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑)))) |
| 17 | uzind4s.2 | . . 3 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) | |
| 18 | 10, 16, 17 | chvarfv 2243 | . 2 ⊢ (𝑚 ∈ (ℤ≥‘𝑀) → ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑)) |
| 19 | 1, 2, 3, 4, 5, 18 | uzind4 12810 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑘]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2067 ∈ wcel 2111 [wsbc 3736 ‘cfv 6487 (class class class)co 7352 1c1 11013 + caddc 11015 ℤcz 12474 ℤ≥cuz 12738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-n0 12388 df-z 12475 df-uz 12739 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |