| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzind4s | Structured version Visualization version GIF version | ||
| Description: Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.) |
| Ref | Expression |
|---|---|
| uzind4s.1 | ⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑) |
| uzind4s.2 | ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) |
| Ref | Expression |
|---|---|
| uzind4s | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑘]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3742 | . 2 ⊢ (𝑗 = 𝑀 → ([𝑗 / 𝑘]𝜑 ↔ [𝑀 / 𝑘]𝜑)) | |
| 2 | sbequ 2085 | . 2 ⊢ (𝑗 = 𝑚 → ([𝑗 / 𝑘]𝜑 ↔ [𝑚 / 𝑘]𝜑)) | |
| 3 | dfsbcq2 3742 | . 2 ⊢ (𝑗 = (𝑚 + 1) → ([𝑗 / 𝑘]𝜑 ↔ [(𝑚 + 1) / 𝑘]𝜑)) | |
| 4 | dfsbcq2 3742 | . 2 ⊢ (𝑗 = 𝑁 → ([𝑗 / 𝑘]𝜑 ↔ [𝑁 / 𝑘]𝜑)) | |
| 5 | uzind4s.1 | . 2 ⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑) | |
| 6 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑘 𝑚 ∈ (ℤ≥‘𝑀) | |
| 7 | nfs1v 2158 | . . . . 5 ⊢ Ⅎ𝑘[𝑚 / 𝑘]𝜑 | |
| 8 | nfsbc1v 3759 | . . . . 5 ⊢ Ⅎ𝑘[(𝑚 + 1) / 𝑘]𝜑 | |
| 9 | 7, 8 | nfim 1897 | . . . 4 ⊢ Ⅎ𝑘([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑) |
| 10 | 6, 9 | nfim 1897 | . . 3 ⊢ Ⅎ𝑘(𝑚 ∈ (ℤ≥‘𝑀) → ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑)) |
| 11 | eleq1w 2812 | . . . 4 ⊢ (𝑘 = 𝑚 → (𝑘 ∈ (ℤ≥‘𝑀) ↔ 𝑚 ∈ (ℤ≥‘𝑀))) | |
| 12 | sbequ12 2253 | . . . . 5 ⊢ (𝑘 = 𝑚 → (𝜑 ↔ [𝑚 / 𝑘]𝜑)) | |
| 13 | oveq1 7348 | . . . . . 6 ⊢ (𝑘 = 𝑚 → (𝑘 + 1) = (𝑚 + 1)) | |
| 14 | 13 | sbceq1d 3744 | . . . . 5 ⊢ (𝑘 = 𝑚 → ([(𝑘 + 1) / 𝑘]𝜑 ↔ [(𝑚 + 1) / 𝑘]𝜑)) |
| 15 | 12, 14 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑚 → ((𝜑 → [(𝑘 + 1) / 𝑘]𝜑) ↔ ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑))) |
| 16 | 11, 15 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑚 → ((𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) ↔ (𝑚 ∈ (ℤ≥‘𝑀) → ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑)))) |
| 17 | uzind4s.2 | . . 3 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) | |
| 18 | 10, 16, 17 | chvarfv 2242 | . 2 ⊢ (𝑚 ∈ (ℤ≥‘𝑀) → ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑)) |
| 19 | 1, 2, 3, 4, 5, 18 | uzind4 12796 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑘]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2066 ∈ wcel 2110 [wsbc 3739 ‘cfv 6477 (class class class)co 7341 1c1 10999 + caddc 11001 ℤcz 12460 ℤ≥cuz 12724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |