MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind4s Structured version   Visualization version   GIF version

Theorem uzind4s 12930
Description: Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.)
Hypotheses
Ref Expression
uzind4s.1 (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑)
uzind4s.2 (𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑))
Assertion
Ref Expression
uzind4s (𝑁 ∈ (ℤ𝑀) → [𝑁 / 𝑘]𝜑)
Distinct variable group:   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   𝑁(𝑘)

Proof of Theorem uzind4s
Dummy variables 𝑚 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3781 . 2 (𝑗 = 𝑀 → ([𝑗 / 𝑘]𝜑[𝑀 / 𝑘]𝜑))
2 sbequ 2078 . 2 (𝑗 = 𝑚 → ([𝑗 / 𝑘]𝜑 ↔ [𝑚 / 𝑘]𝜑))
3 dfsbcq2 3781 . 2 (𝑗 = (𝑚 + 1) → ([𝑗 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
4 dfsbcq2 3781 . 2 (𝑗 = 𝑁 → ([𝑗 / 𝑘]𝜑[𝑁 / 𝑘]𝜑))
5 uzind4s.1 . 2 (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑)
6 nfv 1909 . . . 4 𝑘 𝑚 ∈ (ℤ𝑀)
7 nfs1v 2145 . . . . 5 𝑘[𝑚 / 𝑘]𝜑
8 nfsbc1v 3798 . . . . 5 𝑘[(𝑚 + 1) / 𝑘]𝜑
97, 8nfim 1891 . . . 4 𝑘([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑)
106, 9nfim 1891 . . 3 𝑘(𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
11 eleq1w 2812 . . . 4 (𝑘 = 𝑚 → (𝑘 ∈ (ℤ𝑀) ↔ 𝑚 ∈ (ℤ𝑀)))
12 sbequ12 2238 . . . . 5 (𝑘 = 𝑚 → (𝜑 ↔ [𝑚 / 𝑘]𝜑))
13 oveq1 7433 . . . . . 6 (𝑘 = 𝑚 → (𝑘 + 1) = (𝑚 + 1))
1413sbceq1d 3783 . . . . 5 (𝑘 = 𝑚 → ([(𝑘 + 1) / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
1512, 14imbi12d 343 . . . 4 (𝑘 = 𝑚 → ((𝜑[(𝑘 + 1) / 𝑘]𝜑) ↔ ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑)))
1611, 15imbi12d 343 . . 3 (𝑘 = 𝑚 → ((𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑)) ↔ (𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))))
17 uzind4s.2 . . 3 (𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑))
1810, 16, 17chvarfv 2228 . 2 (𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
191, 2, 3, 4, 5, 18uzind4 12928 1 (𝑁 ∈ (ℤ𝑀) → [𝑁 / 𝑘]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2059  wcel 2098  [wsbc 3778  cfv 6553  (class class class)co 7426  1c1 11147   + caddc 11149  cz 12596  cuz 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator