MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind4s Structured version   Visualization version   GIF version

Theorem uzind4s 12893
Description: Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.)
Hypotheses
Ref Expression
uzind4s.1 (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑)
uzind4s.2 (𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑))
Assertion
Ref Expression
uzind4s (𝑁 ∈ (ℤ𝑀) → [𝑁 / 𝑘]𝜑)
Distinct variable group:   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   𝑁(𝑘)

Proof of Theorem uzind4s
Dummy variables 𝑚 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3775 . 2 (𝑗 = 𝑀 → ([𝑗 / 𝑘]𝜑[𝑀 / 𝑘]𝜑))
2 sbequ 2078 . 2 (𝑗 = 𝑚 → ([𝑗 / 𝑘]𝜑 ↔ [𝑚 / 𝑘]𝜑))
3 dfsbcq2 3775 . 2 (𝑗 = (𝑚 + 1) → ([𝑗 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
4 dfsbcq2 3775 . 2 (𝑗 = 𝑁 → ([𝑗 / 𝑘]𝜑[𝑁 / 𝑘]𝜑))
5 uzind4s.1 . 2 (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑)
6 nfv 1909 . . . 4 𝑘 𝑚 ∈ (ℤ𝑀)
7 nfs1v 2145 . . . . 5 𝑘[𝑚 / 𝑘]𝜑
8 nfsbc1v 3792 . . . . 5 𝑘[(𝑚 + 1) / 𝑘]𝜑
97, 8nfim 1891 . . . 4 𝑘([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑)
106, 9nfim 1891 . . 3 𝑘(𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
11 eleq1w 2810 . . . 4 (𝑘 = 𝑚 → (𝑘 ∈ (ℤ𝑀) ↔ 𝑚 ∈ (ℤ𝑀)))
12 sbequ12 2235 . . . . 5 (𝑘 = 𝑚 → (𝜑 ↔ [𝑚 / 𝑘]𝜑))
13 oveq1 7411 . . . . . 6 (𝑘 = 𝑚 → (𝑘 + 1) = (𝑚 + 1))
1413sbceq1d 3777 . . . . 5 (𝑘 = 𝑚 → ([(𝑘 + 1) / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
1512, 14imbi12d 344 . . . 4 (𝑘 = 𝑚 → ((𝜑[(𝑘 + 1) / 𝑘]𝜑) ↔ ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑)))
1611, 15imbi12d 344 . . 3 (𝑘 = 𝑚 → ((𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑)) ↔ (𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))))
17 uzind4s.2 . . 3 (𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑))
1810, 16, 17chvarfv 2225 . 2 (𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
191, 2, 3, 4, 5, 18uzind4 12891 1 (𝑁 ∈ (ℤ𝑀) → [𝑁 / 𝑘]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2059  wcel 2098  [wsbc 3772  cfv 6536  (class class class)co 7404  1c1 11110   + caddc 11112  cz 12559  cuz 12823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator