![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > diagval | Structured version Visualization version GIF version |
Description: Define the diagonal functor, which is the functor 𝐶⟶(𝐷 Func 𝐶) whose object part is 𝑥 ∈ 𝐶 ↦ (𝑦 ∈ 𝐷 ↦ 𝑥). We can define this equationally as the currying of the first projection functor, and by expressing it this way we get a quick proof of functoriality. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
diagval.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
diagval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
diagval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
Ref | Expression |
---|---|
diagval | ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diagval.l | . 2 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
2 | df-diag 18272 | . . . 4 ⊢ Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑))) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑)))) |
4 | simprl 771 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → 𝑐 = 𝐶) | |
5 | simprr 773 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → 𝑑 = 𝐷) | |
6 | 4, 5 | opeq12d 4885 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → 〈𝑐, 𝑑〉 = 〈𝐶, 𝐷〉) |
7 | 4, 5 | oveq12d 7448 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → (𝑐 1stF 𝑑) = (𝐶 1stF 𝐷)) |
8 | 6, 7 | oveq12d 7448 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑)) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
9 | diagval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
10 | diagval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
11 | ovexd 7465 | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) ∈ V) | |
12 | 3, 8, 9, 10, 11 | ovmpod 7584 | . 2 ⊢ (𝜑 → (𝐶Δfunc𝐷) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
13 | 1, 12 | eqtrid 2786 | 1 ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 〈cop 4636 (class class class)co 7430 ∈ cmpo 7432 Catccat 17708 1stF c1stf 18224 curryF ccurf 18266 Δfunccdiag 18268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-diag 18272 |
This theorem is referenced by: diagcl 18297 diag11 18299 diag12 18300 diag2 18301 |
Copyright terms: Public domain | W3C validator |