Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > diagval | Structured version Visualization version GIF version |
Description: Define the diagonal functor, which is the functor 𝐶⟶(𝐷 Func 𝐶) whose object part is 𝑥 ∈ 𝐶 ↦ (𝑦 ∈ 𝐷 ↦ 𝑥). We can define this equationally as the currying of the first projection functor, and by expressing it this way we get a quick proof of functoriality. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
diagval.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
diagval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
diagval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
Ref | Expression |
---|---|
diagval | ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diagval.l | . 2 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
2 | df-diag 17850 | . . . 4 ⊢ Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑))) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑)))) |
4 | simprl 767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → 𝑐 = 𝐶) | |
5 | simprr 769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → 𝑑 = 𝐷) | |
6 | 4, 5 | opeq12d 4809 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → 〈𝑐, 𝑑〉 = 〈𝐶, 𝐷〉) |
7 | 4, 5 | oveq12d 7273 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → (𝑐 1stF 𝑑) = (𝐶 1stF 𝐷)) |
8 | 6, 7 | oveq12d 7273 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑)) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
9 | diagval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
10 | diagval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
11 | ovexd 7290 | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) ∈ V) | |
12 | 3, 8, 9, 10, 11 | ovmpod 7403 | . 2 ⊢ (𝜑 → (𝐶Δfunc𝐷) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
13 | 1, 12 | eqtrid 2790 | 1 ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 (class class class)co 7255 ∈ cmpo 7257 Catccat 17290 1stF c1stf 17802 curryF ccurf 17844 Δfunccdiag 17846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-diag 17850 |
This theorem is referenced by: diagcl 17875 diag11 17877 diag12 17878 diag2 17879 |
Copyright terms: Public domain | W3C validator |