MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diagval Structured version   Visualization version   GIF version

Theorem diagval 18055
Description: Define the diagonal functor, which is the functor 𝐶⟶(𝐷 Func 𝐶) whose object part is 𝑥𝐶 ↦ (𝑦𝐷𝑥). We can define this equationally as the currying of the first projection functor, and by expressing it this way we get a quick proof of functoriality. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l 𝐿 = (𝐶Δfunc𝐷)
diagval.c (𝜑𝐶 ∈ Cat)
diagval.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
diagval (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))

Proof of Theorem diagval
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diagval.l . 2 𝐿 = (𝐶Δfunc𝐷)
2 df-diag 18031 . . . 4 Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (⟨𝑐, 𝑑⟩ curryF (𝑐 1stF 𝑑)))
32a1i 11 . . 3 (𝜑 → Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (⟨𝑐, 𝑑⟩ curryF (𝑐 1stF 𝑑))))
4 simprl 769 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → 𝑐 = 𝐶)
5 simprr 771 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → 𝑑 = 𝐷)
64, 5opeq12d 4829 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
74, 5oveq12d 7359 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (𝑐 1stF 𝑑) = (𝐶 1stF 𝐷))
86, 7oveq12d 7359 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (⟨𝑐, 𝑑⟩ curryF (𝑐 1stF 𝑑)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
9 diagval.c . . 3 (𝜑𝐶 ∈ Cat)
10 diagval.d . . 3 (𝜑𝐷 ∈ Cat)
11 ovexd 7376 . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) ∈ V)
123, 8, 9, 10, 11ovmpod 7491 . 2 (𝜑 → (𝐶Δfunc𝐷) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
131, 12eqtrid 2789 1 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  Vcvv 3442  cop 4583  (class class class)co 7341  cmpo 7343  Catccat 17470   1stF c1stf 17983   curryF ccurf 18025  Δfunccdiag 18027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3731  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-opab 5159  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-iota 6435  df-fun 6485  df-fv 6491  df-ov 7344  df-oprab 7345  df-mpo 7346  df-diag 18031
This theorem is referenced by:  diagcl  18056  diag11  18058  diag12  18059  diag2  18060
  Copyright terms: Public domain W3C validator