Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > diagval | Structured version Visualization version GIF version |
Description: Define the diagonal functor, which is the functor 𝐶⟶(𝐷 Func 𝐶) whose object part is 𝑥 ∈ 𝐶 ↦ (𝑦 ∈ 𝐷 ↦ 𝑥). We can define this equationally as the currying of the first projection functor, and by expressing it this way we get a quick proof of functoriality. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
diagval.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
diagval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
diagval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
Ref | Expression |
---|---|
diagval | ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diagval.l | . 2 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
2 | df-diag 17517 | . . . 4 ⊢ Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑))) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑)))) |
4 | simprl 771 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → 𝑐 = 𝐶) | |
5 | simprr 773 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → 𝑑 = 𝐷) | |
6 | 4, 5 | opeq12d 4764 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → 〈𝑐, 𝑑〉 = 〈𝐶, 𝐷〉) |
7 | 4, 5 | oveq12d 7161 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → (𝑐 1stF 𝑑) = (𝐶 1stF 𝐷)) |
8 | 6, 7 | oveq12d 7161 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑)) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
9 | diagval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
10 | diagval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
11 | ovexd 7178 | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) ∈ V) | |
12 | 3, 8, 9, 10, 11 | ovmpod 7290 | . 2 ⊢ (𝜑 → (𝐶Δfunc𝐷) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
13 | 1, 12 | syl5eq 2806 | 1 ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3407 〈cop 4521 (class class class)co 7143 ∈ cmpo 7145 Catccat 16978 1stF c1stf 17470 curryF ccurf 17511 Δfunccdiag 17513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pr 5291 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ral 3073 df-rex 3074 df-v 3409 df-sbc 3694 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-nul 4222 df-if 4414 df-sn 4516 df-pr 4518 df-op 4522 df-uni 4792 df-br 5026 df-opab 5088 df-id 5423 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-iota 6287 df-fun 6330 df-fv 6336 df-ov 7146 df-oprab 7147 df-mpo 7148 df-diag 17517 |
This theorem is referenced by: diagcl 17542 diag11 17544 diag12 17545 diag2 17546 |
Copyright terms: Public domain | W3C validator |