| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > diagval | Structured version Visualization version GIF version | ||
| Description: Define the diagonal functor, which is the functor 𝐶⟶(𝐷 Func 𝐶) whose object part is 𝑥 ∈ 𝐶 ↦ (𝑦 ∈ 𝐷 ↦ 𝑥). We can define this equationally as the currying of the first projection functor, and by expressing it this way we get a quick proof of functoriality. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
| Ref | Expression |
|---|---|
| diagval.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| diagval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diagval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Ref | Expression |
|---|---|
| diagval | ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diagval.l | . 2 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 2 | df-diag 18177 | . . . 4 ⊢ Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑))) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑)))) |
| 4 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → 𝑐 = 𝐶) | |
| 5 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → 𝑑 = 𝐷) | |
| 6 | 4, 5 | opeq12d 4845 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → 〈𝑐, 𝑑〉 = 〈𝐶, 𝐷〉) |
| 7 | 4, 5 | oveq12d 7405 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → (𝑐 1stF 𝑑) = (𝐶 1stF 𝐷)) |
| 8 | 6, 7 | oveq12d 7405 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑)) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
| 9 | diagval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 10 | diagval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 11 | ovexd 7422 | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) ∈ V) | |
| 12 | 3, 8, 9, 10, 11 | ovmpod 7541 | . 2 ⊢ (𝜑 → (𝐶Δfunc𝐷) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
| 13 | 1, 12 | eqtrid 2776 | 1 ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 (class class class)co 7387 ∈ cmpo 7389 Catccat 17625 1stF c1stf 18130 curryF ccurf 18171 Δfunccdiag 18173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-diag 18177 |
| This theorem is referenced by: diagcl 18202 diag11 18204 diag12 18205 diag2 18206 diagpropd 49281 |
| Copyright terms: Public domain | W3C validator |