MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diagval Structured version   Visualization version   GIF version

Theorem diagval 17541
Description: Define the diagonal functor, which is the functor 𝐶⟶(𝐷 Func 𝐶) whose object part is 𝑥𝐶 ↦ (𝑦𝐷𝑥). We can define this equationally as the currying of the first projection functor, and by expressing it this way we get a quick proof of functoriality. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l 𝐿 = (𝐶Δfunc𝐷)
diagval.c (𝜑𝐶 ∈ Cat)
diagval.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
diagval (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))

Proof of Theorem diagval
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diagval.l . 2 𝐿 = (𝐶Δfunc𝐷)
2 df-diag 17517 . . . 4 Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (⟨𝑐, 𝑑⟩ curryF (𝑐 1stF 𝑑)))
32a1i 11 . . 3 (𝜑 → Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (⟨𝑐, 𝑑⟩ curryF (𝑐 1stF 𝑑))))
4 simprl 771 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → 𝑐 = 𝐶)
5 simprr 773 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → 𝑑 = 𝐷)
64, 5opeq12d 4764 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
74, 5oveq12d 7161 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (𝑐 1stF 𝑑) = (𝐶 1stF 𝐷))
86, 7oveq12d 7161 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (⟨𝑐, 𝑑⟩ curryF (𝑐 1stF 𝑑)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
9 diagval.c . . 3 (𝜑𝐶 ∈ Cat)
10 diagval.d . . 3 (𝜑𝐷 ∈ Cat)
11 ovexd 7178 . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) ∈ V)
123, 8, 9, 10, 11ovmpod 7290 . 2 (𝜑 → (𝐶Δfunc𝐷) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
131, 12syl5eq 2806 1 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  Vcvv 3407  cop 4521  (class class class)co 7143  cmpo 7145  Catccat 16978   1stF c1stf 17470   curryF ccurf 17511  Δfunccdiag 17513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pr 5291
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ral 3073  df-rex 3074  df-v 3409  df-sbc 3694  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-br 5026  df-opab 5088  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-iota 6287  df-fun 6330  df-fv 6336  df-ov 7146  df-oprab 7147  df-mpo 7148  df-diag 17517
This theorem is referenced by:  diagcl  17542  diag11  17544  diag12  17545  diag2  17546
  Copyright terms: Public domain W3C validator