MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diagval Structured version   Visualization version   GIF version

Theorem diagval 17874
Description: Define the diagonal functor, which is the functor 𝐶⟶(𝐷 Func 𝐶) whose object part is 𝑥𝐶 ↦ (𝑦𝐷𝑥). We can define this equationally as the currying of the first projection functor, and by expressing it this way we get a quick proof of functoriality. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l 𝐿 = (𝐶Δfunc𝐷)
diagval.c (𝜑𝐶 ∈ Cat)
diagval.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
diagval (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))

Proof of Theorem diagval
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diagval.l . 2 𝐿 = (𝐶Δfunc𝐷)
2 df-diag 17850 . . . 4 Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (⟨𝑐, 𝑑⟩ curryF (𝑐 1stF 𝑑)))
32a1i 11 . . 3 (𝜑 → Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (⟨𝑐, 𝑑⟩ curryF (𝑐 1stF 𝑑))))
4 simprl 767 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → 𝑐 = 𝐶)
5 simprr 769 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → 𝑑 = 𝐷)
64, 5opeq12d 4809 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
74, 5oveq12d 7273 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (𝑐 1stF 𝑑) = (𝐶 1stF 𝐷))
86, 7oveq12d 7273 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (⟨𝑐, 𝑑⟩ curryF (𝑐 1stF 𝑑)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
9 diagval.c . . 3 (𝜑𝐶 ∈ Cat)
10 diagval.d . . 3 (𝜑𝐷 ∈ Cat)
11 ovexd 7290 . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) ∈ V)
123, 8, 9, 10, 11ovmpod 7403 . 2 (𝜑 → (𝐶Δfunc𝐷) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
131, 12eqtrid 2790 1 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564  (class class class)co 7255  cmpo 7257  Catccat 17290   1stF c1stf 17802   curryF ccurf 17844  Δfunccdiag 17846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-diag 17850
This theorem is referenced by:  diagcl  17875  diag11  17877  diag12  17878  diag2  17879
  Copyright terms: Public domain W3C validator