MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diagval Structured version   Visualization version   GIF version

Theorem diagval 17490
Description: Define the diagonal functor, which is the functor 𝐶⟶(𝐷 Func 𝐶) whose object part is 𝑥𝐶 ↦ (𝑦𝐷𝑥). We can define this equationally as the currying of the first projection functor, and by expressing it this way we get a quick proof of functoriality. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l 𝐿 = (𝐶Δfunc𝐷)
diagval.c (𝜑𝐶 ∈ Cat)
diagval.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
diagval (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))

Proof of Theorem diagval
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diagval.l . 2 𝐿 = (𝐶Δfunc𝐷)
2 df-diag 17466 . . . 4 Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (⟨𝑐, 𝑑⟩ curryF (𝑐 1stF 𝑑)))
32a1i 11 . . 3 (𝜑 → Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (⟨𝑐, 𝑑⟩ curryF (𝑐 1stF 𝑑))))
4 simprl 769 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → 𝑐 = 𝐶)
5 simprr 771 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → 𝑑 = 𝐷)
64, 5opeq12d 4811 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
74, 5oveq12d 7174 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (𝑐 1stF 𝑑) = (𝐶 1stF 𝐷))
86, 7oveq12d 7174 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (⟨𝑐, 𝑑⟩ curryF (𝑐 1stF 𝑑)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
9 diagval.c . . 3 (𝜑𝐶 ∈ Cat)
10 diagval.d . . 3 (𝜑𝐷 ∈ Cat)
11 ovexd 7191 . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) ∈ V)
123, 8, 9, 10, 11ovmpod 7302 . 2 (𝜑 → (𝐶Δfunc𝐷) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
131, 12syl5eq 2868 1 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cop 4573  (class class class)co 7156  cmpo 7158  Catccat 16935   1stF c1stf 17419   curryF ccurf 17460  Δfunccdiag 17462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-diag 17466
This theorem is referenced by:  diagcl  17491  diag11  17493  diag12  17494  diag2  17495
  Copyright terms: Public domain W3C validator