Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > diagcl | Structured version Visualization version GIF version |
Description: The diagonal functor is a functor from the base category to the functor category. Another way of saying this is that the constant functor (𝑦 ∈ 𝐷 ↦ 𝑋) is a construction that is natural in 𝑋 (and covariant). (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
diagval.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
diagval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
diagval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
diagcl.q | ⊢ 𝑄 = (𝐷 FuncCat 𝐶) |
Ref | Expression |
---|---|
diagcl | ⊢ (𝜑 → 𝐿 ∈ (𝐶 Func 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diagval.l | . . 3 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
2 | diagval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | diagval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
4 | 1, 2, 3 | diagval 17958 | . 2 ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
5 | eqid 2738 | . . 3 ⊢ (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) | |
6 | diagcl.q | . . 3 ⊢ 𝑄 = (𝐷 FuncCat 𝐶) | |
7 | eqid 2738 | . . . 4 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
8 | eqid 2738 | . . . 4 ⊢ (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷) | |
9 | 7, 2, 3, 8 | 1stfcl 17914 | . . 3 ⊢ (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶)) |
10 | 5, 6, 2, 3, 9 | curfcl 17950 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) ∈ (𝐶 Func 𝑄)) |
11 | 4, 10 | eqeltrd 2839 | 1 ⊢ (𝜑 → 𝐿 ∈ (𝐶 Func 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 〈cop 4567 (class class class)co 7275 Catccat 17373 Func cfunc 17569 FuncCat cfuc 17658 ×c cxpc 17885 1stF c1stf 17886 curryF ccurf 17928 Δfunccdiag 17930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-hom 16986 df-cco 16987 df-cat 17377 df-cid 17378 df-func 17573 df-nat 17659 df-fuc 17660 df-xpc 17889 df-1stf 17890 df-curf 17932 df-diag 17934 |
This theorem is referenced by: diag1cl 17960 diag2cl 17964 |
Copyright terms: Public domain | W3C validator |