MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diagcl Structured version   Visualization version   GIF version

Theorem diagcl 18238
Description: The diagonal functor is a functor from the base category to the functor category. Another way of saying this is that the constant functor (𝑦𝐷𝑋) is a construction that is natural in 𝑋 (and covariant). (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l 𝐿 = (𝐶Δfunc𝐷)
diagval.c (𝜑𝐶 ∈ Cat)
diagval.d (𝜑𝐷 ∈ Cat)
diagcl.q 𝑄 = (𝐷 FuncCat 𝐶)
Assertion
Ref Expression
diagcl (𝜑𝐿 ∈ (𝐶 Func 𝑄))

Proof of Theorem diagcl
StepHypRef Expression
1 diagval.l . . 3 𝐿 = (𝐶Δfunc𝐷)
2 diagval.c . . 3 (𝜑𝐶 ∈ Cat)
3 diagval.d . . 3 (𝜑𝐷 ∈ Cat)
41, 2, 3diagval 18237 . 2 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
5 eqid 2734 . . 3 (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))
6 diagcl.q . . 3 𝑄 = (𝐷 FuncCat 𝐶)
7 eqid 2734 . . . 4 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
8 eqid 2734 . . . 4 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
97, 2, 3, 81stfcl 18194 . . 3 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
105, 6, 2, 3, 9curfcl 18229 . 2 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) ∈ (𝐶 Func 𝑄))
114, 10eqeltrd 2833 1 (𝜑𝐿 ∈ (𝐶 Func 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cop 4605  (class class class)co 7399  Catccat 17661   Func cfunc 17852   FuncCat cfuc 17943   ×c cxpc 18165   1stF c1stf 18166   curryF ccurf 18207  Δfunccdiag 18209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-er 8713  df-map 8836  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-7 12300  df-8 12301  df-9 12302  df-n0 12494  df-z 12581  df-dec 12701  df-uz 12845  df-fz 13514  df-struct 17151  df-slot 17186  df-ndx 17198  df-base 17214  df-hom 17280  df-cco 17281  df-cat 17665  df-cid 17666  df-func 17856  df-nat 17944  df-fuc 17945  df-xpc 18169  df-1stf 18170  df-curf 18211  df-diag 18213
This theorem is referenced by:  diag1cl  18239  diag2cl  18243  diag1f1  49024  diag2f1  49026  diagffth  49208
  Copyright terms: Public domain W3C validator