![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > diagcl | Structured version Visualization version GIF version |
Description: The diagonal functor is a functor from the base category to the functor category. Another way of saying this is that the constant functor (𝑦 ∈ 𝐷 ↦ 𝑋) is a construction that is natural in 𝑋 (and covariant). (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
diagval.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
diagval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
diagval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
diagcl.q | ⊢ 𝑄 = (𝐷 FuncCat 𝐶) |
Ref | Expression |
---|---|
diagcl | ⊢ (𝜑 → 𝐿 ∈ (𝐶 Func 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diagval.l | . . 3 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
2 | diagval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | diagval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
4 | 1, 2, 3 | diagval 18296 | . 2 ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
5 | eqid 2734 | . . 3 ⊢ (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) | |
6 | diagcl.q | . . 3 ⊢ 𝑄 = (𝐷 FuncCat 𝐶) | |
7 | eqid 2734 | . . . 4 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
8 | eqid 2734 | . . . 4 ⊢ (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷) | |
9 | 7, 2, 3, 8 | 1stfcl 18252 | . . 3 ⊢ (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶)) |
10 | 5, 6, 2, 3, 9 | curfcl 18288 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) ∈ (𝐶 Func 𝑄)) |
11 | 4, 10 | eqeltrd 2838 | 1 ⊢ (𝜑 → 𝐿 ∈ (𝐶 Func 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 〈cop 4636 (class class class)co 7430 Catccat 17708 Func cfunc 17904 FuncCat cfuc 17996 ×c cxpc 18223 1stF c1stf 18224 curryF ccurf 18266 Δfunccdiag 18268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17245 df-hom 17321 df-cco 17322 df-cat 17712 df-cid 17713 df-func 17908 df-nat 17997 df-fuc 17998 df-xpc 18227 df-1stf 18228 df-curf 18270 df-diag 18272 |
This theorem is referenced by: diag1cl 18298 diag2cl 18302 |
Copyright terms: Public domain | W3C validator |