![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > diag12 | Structured version Visualization version GIF version |
Description: Value of the constant functor at a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
diagval.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
diagval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
diagval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
diag11.a | ⊢ 𝐴 = (Base‘𝐶) |
diag11.c | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
diag11.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
diag11.b | ⊢ 𝐵 = (Base‘𝐷) |
diag11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
diag12.j | ⊢ 𝐽 = (Hom ‘𝐷) |
diag12.i | ⊢ 1 = (Id‘𝐶) |
diag12.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
diag12.f | ⊢ (𝜑 → 𝐹 ∈ (𝑌𝐽𝑍)) |
Ref | Expression |
---|---|
diag12 | ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐹) = ( 1 ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diag11.k | . . . . . 6 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
2 | diagval.l | . . . . . . . . 9 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
3 | diagval.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | diagval.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
5 | 2, 3, 4 | diagval 18203 | . . . . . . . 8 ⊢ (𝜑 → 𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))) |
6 | 5 | fveq2d 6888 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝐿) = (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))) |
7 | 6 | fveq1d 6886 | . . . . . 6 ⊢ (𝜑 → ((1st ‘𝐿)‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)) |
8 | 1, 7 | eqtrid 2778 | . . . . 5 ⊢ (𝜑 → 𝐾 = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)) |
9 | 8 | fveq2d 6888 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐾) = (2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))) |
10 | 9 | oveqd 7421 | . . 3 ⊢ (𝜑 → (𝑌(2nd ‘𝐾)𝑍) = (𝑌(2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)) |
11 | 10 | fveq1d 6886 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐹) = ((𝑌(2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)‘𝐹)) |
12 | eqid 2726 | . . 3 ⊢ (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) | |
13 | diag11.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
14 | eqid 2726 | . . . 4 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
15 | eqid 2726 | . . . 4 ⊢ (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷) | |
16 | 14, 3, 4, 15 | 1stfcl 18159 | . . 3 ⊢ (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶)) |
17 | diag11.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
18 | diag11.c | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
19 | eqid 2726 | . . 3 ⊢ ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋) | |
20 | diag11.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
21 | diag12.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
22 | diag12.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
23 | diag12.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
24 | diag12.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑌𝐽𝑍)) | |
25 | 12, 13, 3, 4, 16, 17, 18, 19, 20, 21, 22, 23, 24 | curf12 18190 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)‘𝐹) = (( 1 ‘𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹)) |
26 | df-ov 7407 | . . . 4 ⊢ (( 1 ‘𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹) = ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)‘⟨( 1 ‘𝑋), 𝐹⟩) | |
27 | 14, 13, 17 | xpcbas 18140 | . . . . . 6 ⊢ (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷)) |
28 | eqid 2726 | . . . . . 6 ⊢ (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) | |
29 | 18, 20 | opelxpd 5708 | . . . . . 6 ⊢ (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵)) |
30 | 18, 23 | opelxpd 5708 | . . . . . 6 ⊢ (𝜑 → ⟨𝑋, 𝑍⟩ ∈ (𝐴 × 𝐵)) |
31 | 14, 27, 28, 3, 4, 15, 29, 30 | 1stf2 18155 | . . . . 5 ⊢ (𝜑 → (⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩) = (1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))) |
32 | 31 | fveq1d 6886 | . . . 4 ⊢ (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)‘⟨( 1 ‘𝑋), 𝐹⟩) = ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))‘⟨( 1 ‘𝑋), 𝐹⟩)) |
33 | 26, 32 | eqtrid 2778 | . . 3 ⊢ (𝜑 → (( 1 ‘𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹) = ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))‘⟨( 1 ‘𝑋), 𝐹⟩)) |
34 | eqid 2726 | . . . . . . 7 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
35 | 13, 34, 22, 3, 18 | catidcl 17633 | . . . . . 6 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
36 | 35, 24 | opelxpd 5708 | . . . . 5 ⊢ (𝜑 → ⟨( 1 ‘𝑋), 𝐹⟩ ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑌𝐽𝑍))) |
37 | 14, 13, 17, 34, 21, 18, 20, 18, 23, 28 | xpchom2 18148 | . . . . 5 ⊢ (𝜑 → (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑌𝐽𝑍))) |
38 | 36, 37 | eleqtrrd 2830 | . . . 4 ⊢ (𝜑 → ⟨( 1 ‘𝑋), 𝐹⟩ ∈ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩)) |
39 | 38 | fvresd 6904 | . . 3 ⊢ (𝜑 → ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))‘⟨( 1 ‘𝑋), 𝐹⟩) = (1st ‘⟨( 1 ‘𝑋), 𝐹⟩)) |
40 | op1stg 7983 | . . . 4 ⊢ ((( 1 ‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑌𝐽𝑍)) → (1st ‘⟨( 1 ‘𝑋), 𝐹⟩) = ( 1 ‘𝑋)) | |
41 | 35, 24, 40 | syl2anc 583 | . . 3 ⊢ (𝜑 → (1st ‘⟨( 1 ‘𝑋), 𝐹⟩) = ( 1 ‘𝑋)) |
42 | 33, 39, 41 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹) = ( 1 ‘𝑋)) |
43 | 11, 25, 42 | 3eqtrd 2770 | 1 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐹) = ( 1 ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⟨cop 4629 × cxp 5667 ↾ cres 5671 ‘cfv 6536 (class class class)co 7404 1st c1st 7969 2nd c2nd 7970 Basecbs 17151 Hom chom 17215 Catccat 17615 Idccid 17616 ×c cxpc 18130 1stF c1stf 18131 curryF ccurf 18173 Δfunccdiag 18175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-fz 13488 df-struct 17087 df-slot 17122 df-ndx 17134 df-base 17152 df-hom 17228 df-cco 17229 df-cat 17619 df-cid 17620 df-func 17815 df-xpc 18134 df-1stf 18135 df-curf 18177 df-diag 18179 |
This theorem is referenced by: curf2ndf 18210 |
Copyright terms: Public domain | W3C validator |