MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diag12 Structured version   Visualization version   GIF version

Theorem diag12 18193
Description: Value of the constant functor at a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l 𝐿 = (𝐶Δfunc𝐷)
diagval.c (𝜑𝐶 ∈ Cat)
diagval.d (𝜑𝐷 ∈ Cat)
diag11.a 𝐴 = (Base‘𝐶)
diag11.c (𝜑𝑋𝐴)
diag11.k 𝐾 = ((1st𝐿)‘𝑋)
diag11.b 𝐵 = (Base‘𝐷)
diag11.y (𝜑𝑌𝐵)
diag12.j 𝐽 = (Hom ‘𝐷)
diag12.i 1 = (Id‘𝐶)
diag12.z (𝜑𝑍𝐵)
diag12.f (𝜑𝐹 ∈ (𝑌𝐽𝑍))
Assertion
Ref Expression
diag12 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐹) = ( 1𝑋))

Proof of Theorem diag12
StepHypRef Expression
1 diag11.k . . . . . 6 𝐾 = ((1st𝐿)‘𝑋)
2 diagval.l . . . . . . . . 9 𝐿 = (𝐶Δfunc𝐷)
3 diagval.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
4 diagval.d . . . . . . . . 9 (𝜑𝐷 ∈ Cat)
52, 3, 4diagval 18189 . . . . . . . 8 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
65fveq2d 6892 . . . . . . 7 (𝜑 → (1st𝐿) = (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))))
76fveq1d 6890 . . . . . 6 (𝜑 → ((1st𝐿)‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))
81, 7eqtrid 2784 . . . . 5 (𝜑𝐾 = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))
98fveq2d 6892 . . . 4 (𝜑 → (2nd𝐾) = (2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)))
109oveqd 7422 . . 3 (𝜑 → (𝑌(2nd𝐾)𝑍) = (𝑌(2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍))
1110fveq1d 6890 . 2 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐹) = ((𝑌(2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)‘𝐹))
12 eqid 2732 . . 3 (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))
13 diag11.a . . 3 𝐴 = (Base‘𝐶)
14 eqid 2732 . . . 4 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
15 eqid 2732 . . . 4 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
1614, 3, 4, 151stfcl 18145 . . 3 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
17 diag11.b . . 3 𝐵 = (Base‘𝐷)
18 diag11.c . . 3 (𝜑𝑋𝐴)
19 eqid 2732 . . 3 ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)
20 diag11.y . . 3 (𝜑𝑌𝐵)
21 diag12.j . . 3 𝐽 = (Hom ‘𝐷)
22 diag12.i . . 3 1 = (Id‘𝐶)
23 diag12.z . . 3 (𝜑𝑍𝐵)
24 diag12.f . . 3 (𝜑𝐹 ∈ (𝑌𝐽𝑍))
2512, 13, 3, 4, 16, 17, 18, 19, 20, 21, 22, 23, 24curf12 18176 . 2 (𝜑 → ((𝑌(2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)‘𝐹) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹))
26 df-ov 7408 . . . 4 (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹) = ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)‘⟨( 1𝑋), 𝐹⟩)
2714, 13, 17xpcbas 18126 . . . . . 6 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
28 eqid 2732 . . . . . 6 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
2918, 20opelxpd 5713 . . . . . 6 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
3018, 23opelxpd 5713 . . . . . 6 (𝜑 → ⟨𝑋, 𝑍⟩ ∈ (𝐴 × 𝐵))
3114, 27, 28, 3, 4, 15, 29, 301stf2 18141 . . . . 5 (𝜑 → (⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩) = (1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩)))
3231fveq1d 6890 . . . 4 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)‘⟨( 1𝑋), 𝐹⟩) = ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))‘⟨( 1𝑋), 𝐹⟩))
3326, 32eqtrid 2784 . . 3 (𝜑 → (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹) = ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))‘⟨( 1𝑋), 𝐹⟩))
34 eqid 2732 . . . . . . 7 (Hom ‘𝐶) = (Hom ‘𝐶)
3513, 34, 22, 3, 18catidcl 17622 . . . . . 6 (𝜑 → ( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
3635, 24opelxpd 5713 . . . . 5 (𝜑 → ⟨( 1𝑋), 𝐹⟩ ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑌𝐽𝑍)))
3714, 13, 17, 34, 21, 18, 20, 18, 23, 28xpchom2 18134 . . . . 5 (𝜑 → (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑌𝐽𝑍)))
3836, 37eleqtrrd 2836 . . . 4 (𝜑 → ⟨( 1𝑋), 𝐹⟩ ∈ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))
3938fvresd 6908 . . 3 (𝜑 → ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))‘⟨( 1𝑋), 𝐹⟩) = (1st ‘⟨( 1𝑋), 𝐹⟩))
40 op1stg 7983 . . . 4 ((( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑌𝐽𝑍)) → (1st ‘⟨( 1𝑋), 𝐹⟩) = ( 1𝑋))
4135, 24, 40syl2anc 584 . . 3 (𝜑 → (1st ‘⟨( 1𝑋), 𝐹⟩) = ( 1𝑋))
4233, 39, 413eqtrd 2776 . 2 (𝜑 → (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹) = ( 1𝑋))
4311, 25, 423eqtrd 2776 1 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐹) = ( 1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cop 4633   × cxp 5673  cres 5677  cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  Basecbs 17140  Hom chom 17204  Catccat 17604  Idccid 17605   ×c cxpc 18116   1stF c1stf 18117   curryF ccurf 18159  Δfunccdiag 18161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-hom 17217  df-cco 17218  df-cat 17608  df-cid 17609  df-func 17804  df-xpc 18120  df-1stf 18121  df-curf 18163  df-diag 18165
This theorem is referenced by:  curf2ndf  18196
  Copyright terms: Public domain W3C validator