Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > diag12 | Structured version Visualization version GIF version |
Description: Value of the constant functor at a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
diagval.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
diagval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
diagval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
diag11.a | ⊢ 𝐴 = (Base‘𝐶) |
diag11.c | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
diag11.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
diag11.b | ⊢ 𝐵 = (Base‘𝐷) |
diag11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
diag12.j | ⊢ 𝐽 = (Hom ‘𝐷) |
diag12.i | ⊢ 1 = (Id‘𝐶) |
diag12.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
diag12.f | ⊢ (𝜑 → 𝐹 ∈ (𝑌𝐽𝑍)) |
Ref | Expression |
---|---|
diag12 | ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐹) = ( 1 ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diag11.k | . . . . . 6 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
2 | diagval.l | . . . . . . . . 9 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
3 | diagval.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | diagval.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
5 | 2, 3, 4 | diagval 17772 | . . . . . . . 8 ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
6 | 5 | fveq2d 6739 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝐿) = (1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))) |
7 | 6 | fveq1d 6737 | . . . . . 6 ⊢ (𝜑 → ((1st ‘𝐿)‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋)) |
8 | 1, 7 | eqtrid 2790 | . . . . 5 ⊢ (𝜑 → 𝐾 = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋)) |
9 | 8 | fveq2d 6739 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐾) = (2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))) |
10 | 9 | oveqd 7248 | . . 3 ⊢ (𝜑 → (𝑌(2nd ‘𝐾)𝑍) = (𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)) |
11 | 10 | fveq1d 6737 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐹) = ((𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)‘𝐹)) |
12 | eqid 2738 | . . 3 ⊢ (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) | |
13 | diag11.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
14 | eqid 2738 | . . . 4 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
15 | eqid 2738 | . . . 4 ⊢ (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷) | |
16 | 14, 3, 4, 15 | 1stfcl 17728 | . . 3 ⊢ (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶)) |
17 | diag11.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
18 | diag11.c | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
19 | eqid 2738 | . . 3 ⊢ ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋) | |
20 | diag11.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
21 | diag12.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
22 | diag12.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
23 | diag12.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
24 | diag12.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑌𝐽𝑍)) | |
25 | 12, 13, 3, 4, 16, 17, 18, 19, 20, 21, 22, 23, 24 | curf12 17759 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)‘𝐹) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)𝐹)) |
26 | df-ov 7234 | . . . 4 ⊢ (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)𝐹) = ((〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)‘〈( 1 ‘𝑋), 𝐹〉) | |
27 | 14, 13, 17 | xpcbas 17709 | . . . . . 6 ⊢ (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷)) |
28 | eqid 2738 | . . . . . 6 ⊢ (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) | |
29 | 18, 20 | opelxpd 5603 | . . . . . 6 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐴 × 𝐵)) |
30 | 18, 23 | opelxpd 5603 | . . . . . 6 ⊢ (𝜑 → 〈𝑋, 𝑍〉 ∈ (𝐴 × 𝐵)) |
31 | 14, 27, 28, 3, 4, 15, 29, 30 | 1stf2 17724 | . . . . 5 ⊢ (𝜑 → (〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉) = (1st ↾ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉))) |
32 | 31 | fveq1d 6737 | . . . 4 ⊢ (𝜑 → ((〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)‘〈( 1 ‘𝑋), 𝐹〉) = ((1st ↾ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉))‘〈( 1 ‘𝑋), 𝐹〉)) |
33 | 26, 32 | eqtrid 2790 | . . 3 ⊢ (𝜑 → (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)𝐹) = ((1st ↾ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉))‘〈( 1 ‘𝑋), 𝐹〉)) |
34 | eqid 2738 | . . . . . . 7 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
35 | 13, 34, 22, 3, 18 | catidcl 17209 | . . . . . 6 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
36 | 35, 24 | opelxpd 5603 | . . . . 5 ⊢ (𝜑 → 〈( 1 ‘𝑋), 𝐹〉 ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑌𝐽𝑍))) |
37 | 14, 13, 17, 34, 21, 18, 20, 18, 23, 28 | xpchom2 17717 | . . . . 5 ⊢ (𝜑 → (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑌𝐽𝑍))) |
38 | 36, 37 | eleqtrrd 2842 | . . . 4 ⊢ (𝜑 → 〈( 1 ‘𝑋), 𝐹〉 ∈ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉)) |
39 | 38 | fvresd 6755 | . . 3 ⊢ (𝜑 → ((1st ↾ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉))‘〈( 1 ‘𝑋), 𝐹〉) = (1st ‘〈( 1 ‘𝑋), 𝐹〉)) |
40 | op1stg 7791 | . . . 4 ⊢ ((( 1 ‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑌𝐽𝑍)) → (1st ‘〈( 1 ‘𝑋), 𝐹〉) = ( 1 ‘𝑋)) | |
41 | 35, 24, 40 | syl2anc 587 | . . 3 ⊢ (𝜑 → (1st ‘〈( 1 ‘𝑋), 𝐹〉) = ( 1 ‘𝑋)) |
42 | 33, 39, 41 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)𝐹) = ( 1 ‘𝑋)) |
43 | 11, 25, 42 | 3eqtrd 2782 | 1 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐹) = ( 1 ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2111 〈cop 4561 × cxp 5563 ↾ cres 5567 ‘cfv 6397 (class class class)co 7231 1st c1st 7777 2nd c2nd 7778 Basecbs 16784 Hom chom 16837 Catccat 17191 Idccid 17192 ×c cxpc 17699 1stF c1stf 17700 curryF ccurf 17742 Δfunccdiag 17744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-er 8411 df-map 8530 df-ixp 8599 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-3 11918 df-4 11919 df-5 11920 df-6 11921 df-7 11922 df-8 11923 df-9 11924 df-n0 12115 df-z 12201 df-dec 12318 df-uz 12463 df-fz 13120 df-struct 16724 df-slot 16759 df-ndx 16769 df-base 16785 df-hom 16850 df-cco 16851 df-cat 17195 df-cid 17196 df-func 17388 df-xpc 17703 df-1stf 17704 df-curf 17746 df-diag 17748 |
This theorem is referenced by: curf2ndf 17779 |
Copyright terms: Public domain | W3C validator |