MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diag12 Structured version   Visualization version   GIF version

Theorem diag12 17776
Description: Value of the constant functor at a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l 𝐿 = (𝐶Δfunc𝐷)
diagval.c (𝜑𝐶 ∈ Cat)
diagval.d (𝜑𝐷 ∈ Cat)
diag11.a 𝐴 = (Base‘𝐶)
diag11.c (𝜑𝑋𝐴)
diag11.k 𝐾 = ((1st𝐿)‘𝑋)
diag11.b 𝐵 = (Base‘𝐷)
diag11.y (𝜑𝑌𝐵)
diag12.j 𝐽 = (Hom ‘𝐷)
diag12.i 1 = (Id‘𝐶)
diag12.z (𝜑𝑍𝐵)
diag12.f (𝜑𝐹 ∈ (𝑌𝐽𝑍))
Assertion
Ref Expression
diag12 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐹) = ( 1𝑋))

Proof of Theorem diag12
StepHypRef Expression
1 diag11.k . . . . . 6 𝐾 = ((1st𝐿)‘𝑋)
2 diagval.l . . . . . . . . 9 𝐿 = (𝐶Δfunc𝐷)
3 diagval.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
4 diagval.d . . . . . . . . 9 (𝜑𝐷 ∈ Cat)
52, 3, 4diagval 17772 . . . . . . . 8 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
65fveq2d 6739 . . . . . . 7 (𝜑 → (1st𝐿) = (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))))
76fveq1d 6737 . . . . . 6 (𝜑 → ((1st𝐿)‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))
81, 7eqtrid 2790 . . . . 5 (𝜑𝐾 = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))
98fveq2d 6739 . . . 4 (𝜑 → (2nd𝐾) = (2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)))
109oveqd 7248 . . 3 (𝜑 → (𝑌(2nd𝐾)𝑍) = (𝑌(2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍))
1110fveq1d 6737 . 2 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐹) = ((𝑌(2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)‘𝐹))
12 eqid 2738 . . 3 (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))
13 diag11.a . . 3 𝐴 = (Base‘𝐶)
14 eqid 2738 . . . 4 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
15 eqid 2738 . . . 4 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
1614, 3, 4, 151stfcl 17728 . . 3 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
17 diag11.b . . 3 𝐵 = (Base‘𝐷)
18 diag11.c . . 3 (𝜑𝑋𝐴)
19 eqid 2738 . . 3 ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)
20 diag11.y . . 3 (𝜑𝑌𝐵)
21 diag12.j . . 3 𝐽 = (Hom ‘𝐷)
22 diag12.i . . 3 1 = (Id‘𝐶)
23 diag12.z . . 3 (𝜑𝑍𝐵)
24 diag12.f . . 3 (𝜑𝐹 ∈ (𝑌𝐽𝑍))
2512, 13, 3, 4, 16, 17, 18, 19, 20, 21, 22, 23, 24curf12 17759 . 2 (𝜑 → ((𝑌(2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)‘𝐹) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹))
26 df-ov 7234 . . . 4 (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹) = ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)‘⟨( 1𝑋), 𝐹⟩)
2714, 13, 17xpcbas 17709 . . . . . 6 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
28 eqid 2738 . . . . . 6 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
2918, 20opelxpd 5603 . . . . . 6 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
3018, 23opelxpd 5603 . . . . . 6 (𝜑 → ⟨𝑋, 𝑍⟩ ∈ (𝐴 × 𝐵))
3114, 27, 28, 3, 4, 15, 29, 301stf2 17724 . . . . 5 (𝜑 → (⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩) = (1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩)))
3231fveq1d 6737 . . . 4 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)‘⟨( 1𝑋), 𝐹⟩) = ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))‘⟨( 1𝑋), 𝐹⟩))
3326, 32eqtrid 2790 . . 3 (𝜑 → (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹) = ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))‘⟨( 1𝑋), 𝐹⟩))
34 eqid 2738 . . . . . . 7 (Hom ‘𝐶) = (Hom ‘𝐶)
3513, 34, 22, 3, 18catidcl 17209 . . . . . 6 (𝜑 → ( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
3635, 24opelxpd 5603 . . . . 5 (𝜑 → ⟨( 1𝑋), 𝐹⟩ ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑌𝐽𝑍)))
3714, 13, 17, 34, 21, 18, 20, 18, 23, 28xpchom2 17717 . . . . 5 (𝜑 → (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑌𝐽𝑍)))
3836, 37eleqtrrd 2842 . . . 4 (𝜑 → ⟨( 1𝑋), 𝐹⟩ ∈ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))
3938fvresd 6755 . . 3 (𝜑 → ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))‘⟨( 1𝑋), 𝐹⟩) = (1st ‘⟨( 1𝑋), 𝐹⟩))
40 op1stg 7791 . . . 4 ((( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑌𝐽𝑍)) → (1st ‘⟨( 1𝑋), 𝐹⟩) = ( 1𝑋))
4135, 24, 40syl2anc 587 . . 3 (𝜑 → (1st ‘⟨( 1𝑋), 𝐹⟩) = ( 1𝑋))
4233, 39, 413eqtrd 2782 . 2 (𝜑 → (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹) = ( 1𝑋))
4311, 25, 423eqtrd 2782 1 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐹) = ( 1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2111  cop 4561   × cxp 5563  cres 5567  cfv 6397  (class class class)co 7231  1st c1st 7777  2nd c2nd 7778  Basecbs 16784  Hom chom 16837  Catccat 17191  Idccid 17192   ×c cxpc 17699   1stF c1stf 17700   curryF ccurf 17742  Δfunccdiag 17744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-om 7663  df-1st 7779  df-2nd 7780  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-1o 8222  df-er 8411  df-map 8530  df-ixp 8599  df-en 8647  df-dom 8648  df-sdom 8649  df-fin 8650  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-nn 11855  df-2 11917  df-3 11918  df-4 11919  df-5 11920  df-6 11921  df-7 11922  df-8 11923  df-9 11924  df-n0 12115  df-z 12201  df-dec 12318  df-uz 12463  df-fz 13120  df-struct 16724  df-slot 16759  df-ndx 16769  df-base 16785  df-hom 16850  df-cco 16851  df-cat 17195  df-cid 17196  df-func 17388  df-xpc 17703  df-1stf 17704  df-curf 17746  df-diag 17748
This theorem is referenced by:  curf2ndf  17779
  Copyright terms: Public domain W3C validator