| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > diag12 | Structured version Visualization version GIF version | ||
| Description: Value of the constant functor at a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
| Ref | Expression |
|---|---|
| diagval.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| diagval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diagval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| diag11.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag11.c | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| diag11.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
| diag11.b | ⊢ 𝐵 = (Base‘𝐷) |
| diag11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| diag12.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| diag12.i | ⊢ 1 = (Id‘𝐶) |
| diag12.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| diag12.f | ⊢ (𝜑 → 𝐹 ∈ (𝑌𝐽𝑍)) |
| Ref | Expression |
|---|---|
| diag12 | ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐹) = ( 1 ‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag11.k | . . . . . 6 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
| 2 | diagval.l | . . . . . . . . 9 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 3 | diagval.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | diagval.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 5 | 2, 3, 4 | diagval 18208 | . . . . . . . 8 ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
| 6 | 5 | fveq2d 6865 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝐿) = (1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))) |
| 7 | 6 | fveq1d 6863 | . . . . . 6 ⊢ (𝜑 → ((1st ‘𝐿)‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋)) |
| 8 | 1, 7 | eqtrid 2777 | . . . . 5 ⊢ (𝜑 → 𝐾 = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋)) |
| 9 | 8 | fveq2d 6865 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐾) = (2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))) |
| 10 | 9 | oveqd 7407 | . . 3 ⊢ (𝜑 → (𝑌(2nd ‘𝐾)𝑍) = (𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)) |
| 11 | 10 | fveq1d 6863 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐹) = ((𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)‘𝐹)) |
| 12 | eqid 2730 | . . 3 ⊢ (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) | |
| 13 | diag11.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 14 | eqid 2730 | . . . 4 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
| 15 | eqid 2730 | . . . 4 ⊢ (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷) | |
| 16 | 14, 3, 4, 15 | 1stfcl 18165 | . . 3 ⊢ (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶)) |
| 17 | diag11.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 18 | diag11.c | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 19 | eqid 2730 | . . 3 ⊢ ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋) | |
| 20 | diag11.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 21 | diag12.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 22 | diag12.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 23 | diag12.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 24 | diag12.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑌𝐽𝑍)) | |
| 25 | 12, 13, 3, 4, 16, 17, 18, 19, 20, 21, 22, 23, 24 | curf12 18195 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)‘𝐹) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)𝐹)) |
| 26 | df-ov 7393 | . . . 4 ⊢ (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)𝐹) = ((〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)‘〈( 1 ‘𝑋), 𝐹〉) | |
| 27 | 14, 13, 17 | xpcbas 18146 | . . . . . 6 ⊢ (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷)) |
| 28 | eqid 2730 | . . . . . 6 ⊢ (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) | |
| 29 | 18, 20 | opelxpd 5680 | . . . . . 6 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐴 × 𝐵)) |
| 30 | 18, 23 | opelxpd 5680 | . . . . . 6 ⊢ (𝜑 → 〈𝑋, 𝑍〉 ∈ (𝐴 × 𝐵)) |
| 31 | 14, 27, 28, 3, 4, 15, 29, 30 | 1stf2 18161 | . . . . 5 ⊢ (𝜑 → (〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉) = (1st ↾ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉))) |
| 32 | 31 | fveq1d 6863 | . . . 4 ⊢ (𝜑 → ((〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)‘〈( 1 ‘𝑋), 𝐹〉) = ((1st ↾ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉))‘〈( 1 ‘𝑋), 𝐹〉)) |
| 33 | 26, 32 | eqtrid 2777 | . . 3 ⊢ (𝜑 → (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)𝐹) = ((1st ↾ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉))‘〈( 1 ‘𝑋), 𝐹〉)) |
| 34 | eqid 2730 | . . . . . . 7 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 35 | 13, 34, 22, 3, 18 | catidcl 17650 | . . . . . 6 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 36 | 35, 24 | opelxpd 5680 | . . . . 5 ⊢ (𝜑 → 〈( 1 ‘𝑋), 𝐹〉 ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑌𝐽𝑍))) |
| 37 | 14, 13, 17, 34, 21, 18, 20, 18, 23, 28 | xpchom2 18154 | . . . . 5 ⊢ (𝜑 → (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑌𝐽𝑍))) |
| 38 | 36, 37 | eleqtrrd 2832 | . . . 4 ⊢ (𝜑 → 〈( 1 ‘𝑋), 𝐹〉 ∈ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉)) |
| 39 | 38 | fvresd 6881 | . . 3 ⊢ (𝜑 → ((1st ↾ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉))‘〈( 1 ‘𝑋), 𝐹〉) = (1st ‘〈( 1 ‘𝑋), 𝐹〉)) |
| 40 | op1stg 7983 | . . . 4 ⊢ ((( 1 ‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑌𝐽𝑍)) → (1st ‘〈( 1 ‘𝑋), 𝐹〉) = ( 1 ‘𝑋)) | |
| 41 | 35, 24, 40 | syl2anc 584 | . . 3 ⊢ (𝜑 → (1st ‘〈( 1 ‘𝑋), 𝐹〉) = ( 1 ‘𝑋)) |
| 42 | 33, 39, 41 | 3eqtrd 2769 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)𝐹) = ( 1 ‘𝑋)) |
| 43 | 11, 25, 42 | 3eqtrd 2769 | 1 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐹) = ( 1 ‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4598 × cxp 5639 ↾ cres 5643 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 Basecbs 17186 Hom chom 17238 Catccat 17632 Idccid 17633 ×c cxpc 18136 1stF c1stf 18137 curryF ccurf 18178 Δfunccdiag 18180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-hom 17251 df-cco 17252 df-cat 17636 df-cid 17637 df-func 17827 df-xpc 18140 df-1stf 18141 df-curf 18182 df-diag 18184 |
| This theorem is referenced by: curf2ndf 18215 diag1 49297 prcofdiag1 49386 oppfdiag1 49407 isinito2lem 49491 concom 49656 coccom 49657 |
| Copyright terms: Public domain | W3C validator |