![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > diag12 | Structured version Visualization version GIF version |
Description: Value of the constant functor at a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
diagval.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
diagval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
diagval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
diag11.a | ⊢ 𝐴 = (Base‘𝐶) |
diag11.c | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
diag11.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
diag11.b | ⊢ 𝐵 = (Base‘𝐷) |
diag11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
diag12.j | ⊢ 𝐽 = (Hom ‘𝐷) |
diag12.i | ⊢ 1 = (Id‘𝐶) |
diag12.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
diag12.f | ⊢ (𝜑 → 𝐹 ∈ (𝑌𝐽𝑍)) |
Ref | Expression |
---|---|
diag12 | ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐹) = ( 1 ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diag11.k | . . . . . 6 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
2 | diagval.l | . . . . . . . . 9 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
3 | diagval.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | diagval.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
5 | 2, 3, 4 | diagval 18310 | . . . . . . . 8 ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
6 | 5 | fveq2d 6924 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝐿) = (1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))) |
7 | 6 | fveq1d 6922 | . . . . . 6 ⊢ (𝜑 → ((1st ‘𝐿)‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋)) |
8 | 1, 7 | eqtrid 2792 | . . . . 5 ⊢ (𝜑 → 𝐾 = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋)) |
9 | 8 | fveq2d 6924 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐾) = (2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))) |
10 | 9 | oveqd 7465 | . . 3 ⊢ (𝜑 → (𝑌(2nd ‘𝐾)𝑍) = (𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)) |
11 | 10 | fveq1d 6922 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐹) = ((𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)‘𝐹)) |
12 | eqid 2740 | . . 3 ⊢ (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) | |
13 | diag11.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
14 | eqid 2740 | . . . 4 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
15 | eqid 2740 | . . . 4 ⊢ (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷) | |
16 | 14, 3, 4, 15 | 1stfcl 18266 | . . 3 ⊢ (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶)) |
17 | diag11.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
18 | diag11.c | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
19 | eqid 2740 | . . 3 ⊢ ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋) | |
20 | diag11.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
21 | diag12.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
22 | diag12.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
23 | diag12.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
24 | diag12.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑌𝐽𝑍)) | |
25 | 12, 13, 3, 4, 16, 17, 18, 19, 20, 21, 22, 23, 24 | curf12 18297 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)‘𝐹) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)𝐹)) |
26 | df-ov 7451 | . . . 4 ⊢ (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)𝐹) = ((〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)‘〈( 1 ‘𝑋), 𝐹〉) | |
27 | 14, 13, 17 | xpcbas 18247 | . . . . . 6 ⊢ (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷)) |
28 | eqid 2740 | . . . . . 6 ⊢ (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) | |
29 | 18, 20 | opelxpd 5739 | . . . . . 6 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐴 × 𝐵)) |
30 | 18, 23 | opelxpd 5739 | . . . . . 6 ⊢ (𝜑 → 〈𝑋, 𝑍〉 ∈ (𝐴 × 𝐵)) |
31 | 14, 27, 28, 3, 4, 15, 29, 30 | 1stf2 18262 | . . . . 5 ⊢ (𝜑 → (〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉) = (1st ↾ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉))) |
32 | 31 | fveq1d 6922 | . . . 4 ⊢ (𝜑 → ((〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)‘〈( 1 ‘𝑋), 𝐹〉) = ((1st ↾ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉))‘〈( 1 ‘𝑋), 𝐹〉)) |
33 | 26, 32 | eqtrid 2792 | . . 3 ⊢ (𝜑 → (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)𝐹) = ((1st ↾ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉))‘〈( 1 ‘𝑋), 𝐹〉)) |
34 | eqid 2740 | . . . . . . 7 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
35 | 13, 34, 22, 3, 18 | catidcl 17740 | . . . . . 6 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
36 | 35, 24 | opelxpd 5739 | . . . . 5 ⊢ (𝜑 → 〈( 1 ‘𝑋), 𝐹〉 ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑌𝐽𝑍))) |
37 | 14, 13, 17, 34, 21, 18, 20, 18, 23, 28 | xpchom2 18255 | . . . . 5 ⊢ (𝜑 → (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑌𝐽𝑍))) |
38 | 36, 37 | eleqtrrd 2847 | . . . 4 ⊢ (𝜑 → 〈( 1 ‘𝑋), 𝐹〉 ∈ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉)) |
39 | 38 | fvresd 6940 | . . 3 ⊢ (𝜑 → ((1st ↾ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑍〉))‘〈( 1 ‘𝑋), 𝐹〉) = (1st ‘〈( 1 ‘𝑋), 𝐹〉)) |
40 | op1stg 8042 | . . . 4 ⊢ ((( 1 ‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑌𝐽𝑍)) → (1st ‘〈( 1 ‘𝑋), 𝐹〉) = ( 1 ‘𝑋)) | |
41 | 35, 24, 40 | syl2anc 583 | . . 3 ⊢ (𝜑 → (1st ‘〈( 1 ‘𝑋), 𝐹〉) = ( 1 ‘𝑋)) |
42 | 33, 39, 41 | 3eqtrd 2784 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐶 1stF 𝐷))〈𝑋, 𝑍〉)𝐹) = ( 1 ‘𝑋)) |
43 | 11, 25, 42 | 3eqtrd 2784 | 1 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐹) = ( 1 ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 〈cop 4654 × cxp 5698 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 Basecbs 17258 Hom chom 17322 Catccat 17722 Idccid 17723 ×c cxpc 18237 1stF c1stf 18238 curryF ccurf 18280 Δfunccdiag 18282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-hom 17335 df-cco 17336 df-cat 17726 df-cid 17727 df-func 17922 df-xpc 18241 df-1stf 18242 df-curf 18284 df-diag 18286 |
This theorem is referenced by: curf2ndf 18317 |
Copyright terms: Public domain | W3C validator |