MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diag12 Structured version   Visualization version   GIF version

Theorem diag12 18239
Description: Value of the constant functor at a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l 𝐿 = (𝐶Δfunc𝐷)
diagval.c (𝜑𝐶 ∈ Cat)
diagval.d (𝜑𝐷 ∈ Cat)
diag11.a 𝐴 = (Base‘𝐶)
diag11.c (𝜑𝑋𝐴)
diag11.k 𝐾 = ((1st𝐿)‘𝑋)
diag11.b 𝐵 = (Base‘𝐷)
diag11.y (𝜑𝑌𝐵)
diag12.j 𝐽 = (Hom ‘𝐷)
diag12.i 1 = (Id‘𝐶)
diag12.z (𝜑𝑍𝐵)
diag12.f (𝜑𝐹 ∈ (𝑌𝐽𝑍))
Assertion
Ref Expression
diag12 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐹) = ( 1𝑋))

Proof of Theorem diag12
StepHypRef Expression
1 diag11.k . . . . . 6 𝐾 = ((1st𝐿)‘𝑋)
2 diagval.l . . . . . . . . 9 𝐿 = (𝐶Δfunc𝐷)
3 diagval.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
4 diagval.d . . . . . . . . 9 (𝜑𝐷 ∈ Cat)
52, 3, 4diagval 18235 . . . . . . . 8 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
65fveq2d 6900 . . . . . . 7 (𝜑 → (1st𝐿) = (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))))
76fveq1d 6898 . . . . . 6 (𝜑 → ((1st𝐿)‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))
81, 7eqtrid 2777 . . . . 5 (𝜑𝐾 = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))
98fveq2d 6900 . . . 4 (𝜑 → (2nd𝐾) = (2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)))
109oveqd 7436 . . 3 (𝜑 → (𝑌(2nd𝐾)𝑍) = (𝑌(2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍))
1110fveq1d 6898 . 2 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐹) = ((𝑌(2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)‘𝐹))
12 eqid 2725 . . 3 (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))
13 diag11.a . . 3 𝐴 = (Base‘𝐶)
14 eqid 2725 . . . 4 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
15 eqid 2725 . . . 4 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
1614, 3, 4, 151stfcl 18191 . . 3 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
17 diag11.b . . 3 𝐵 = (Base‘𝐷)
18 diag11.c . . 3 (𝜑𝑋𝐴)
19 eqid 2725 . . 3 ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)
20 diag11.y . . 3 (𝜑𝑌𝐵)
21 diag12.j . . 3 𝐽 = (Hom ‘𝐷)
22 diag12.i . . 3 1 = (Id‘𝐶)
23 diag12.z . . 3 (𝜑𝑍𝐵)
24 diag12.f . . 3 (𝜑𝐹 ∈ (𝑌𝐽𝑍))
2512, 13, 3, 4, 16, 17, 18, 19, 20, 21, 22, 23, 24curf12 18222 . 2 (𝜑 → ((𝑌(2nd ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))𝑍)‘𝐹) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹))
26 df-ov 7422 . . . 4 (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹) = ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)‘⟨( 1𝑋), 𝐹⟩)
2714, 13, 17xpcbas 18172 . . . . . 6 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
28 eqid 2725 . . . . . 6 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
2918, 20opelxpd 5717 . . . . . 6 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
3018, 23opelxpd 5717 . . . . . 6 (𝜑 → ⟨𝑋, 𝑍⟩ ∈ (𝐴 × 𝐵))
3114, 27, 28, 3, 4, 15, 29, 301stf2 18187 . . . . 5 (𝜑 → (⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩) = (1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩)))
3231fveq1d 6898 . . . 4 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)‘⟨( 1𝑋), 𝐹⟩) = ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))‘⟨( 1𝑋), 𝐹⟩))
3326, 32eqtrid 2777 . . 3 (𝜑 → (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹) = ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))‘⟨( 1𝑋), 𝐹⟩))
34 eqid 2725 . . . . . . 7 (Hom ‘𝐶) = (Hom ‘𝐶)
3513, 34, 22, 3, 18catidcl 17665 . . . . . 6 (𝜑 → ( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
3635, 24opelxpd 5717 . . . . 5 (𝜑 → ⟨( 1𝑋), 𝐹⟩ ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑌𝐽𝑍)))
3714, 13, 17, 34, 21, 18, 20, 18, 23, 28xpchom2 18180 . . . . 5 (𝜑 → (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑌𝐽𝑍)))
3836, 37eleqtrrd 2828 . . . 4 (𝜑 → ⟨( 1𝑋), 𝐹⟩ ∈ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))
3938fvresd 6916 . . 3 (𝜑 → ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑍⟩))‘⟨( 1𝑋), 𝐹⟩) = (1st ‘⟨( 1𝑋), 𝐹⟩))
40 op1stg 8006 . . . 4 ((( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑌𝐽𝑍)) → (1st ‘⟨( 1𝑋), 𝐹⟩) = ( 1𝑋))
4135, 24, 40syl2anc 582 . . 3 (𝜑 → (1st ‘⟨( 1𝑋), 𝐹⟩) = ( 1𝑋))
4233, 39, 413eqtrd 2769 . 2 (𝜑 → (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑋, 𝑍⟩)𝐹) = ( 1𝑋))
4311, 25, 423eqtrd 2769 1 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐹) = ( 1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cop 4636   × cxp 5676  cres 5680  cfv 6549  (class class class)co 7419  1st c1st 7992  2nd c2nd 7993  Basecbs 17183  Hom chom 17247  Catccat 17647  Idccid 17648   ×c cxpc 18162   1stF c1stf 18163   curryF ccurf 18205  Δfunccdiag 18207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-slot 17154  df-ndx 17166  df-base 17184  df-hom 17260  df-cco 17261  df-cat 17651  df-cid 17652  df-func 17847  df-xpc 18166  df-1stf 18167  df-curf 18209  df-diag 18211
This theorem is referenced by:  curf2ndf  18242
  Copyright terms: Public domain W3C validator