MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diag2 Structured version   Visualization version   GIF version

Theorem diag2 18198
Description: Value of the diagonal functor at a morphism. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
diag2.l 𝐿 = (𝐶Δfunc𝐷)
diag2.a 𝐴 = (Base‘𝐶)
diag2.b 𝐵 = (Base‘𝐷)
diag2.h 𝐻 = (Hom ‘𝐶)
diag2.c (𝜑𝐶 ∈ Cat)
diag2.d (𝜑𝐷 ∈ Cat)
diag2.x (𝜑𝑋𝐴)
diag2.y (𝜑𝑌𝐴)
diag2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
diag2 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐹) = (𝐵 × {𝐹}))

Proof of Theorem diag2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 diag2.l . . . . . 6 𝐿 = (𝐶Δfunc𝐷)
2 diag2.c . . . . . 6 (𝜑𝐶 ∈ Cat)
3 diag2.d . . . . . 6 (𝜑𝐷 ∈ Cat)
41, 2, 3diagval 18193 . . . . 5 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
54fveq2d 6896 . . . 4 (𝜑 → (2nd𝐿) = (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))))
65oveqd 7426 . . 3 (𝜑 → (𝑋(2nd𝐿)𝑌) = (𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌))
76fveq1d 6894 . 2 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐹) = ((𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌)‘𝐹))
8 eqid 2733 . . 3 (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))
9 diag2.a . . 3 𝐴 = (Base‘𝐶)
10 eqid 2733 . . . 4 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
11 eqid 2733 . . . 4 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
1210, 2, 3, 111stfcl 18149 . . 3 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
13 diag2.b . . 3 𝐵 = (Base‘𝐷)
14 diag2.h . . 3 𝐻 = (Hom ‘𝐶)
15 eqid 2733 . . 3 (Id‘𝐷) = (Id‘𝐷)
16 diag2.x . . 3 (𝜑𝑋𝐴)
17 diag2.y . . 3 (𝜑𝑌𝐴)
18 diag2.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
19 eqid 2733 . . 3 ((𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌)‘𝐹) = ((𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌)‘𝐹)
208, 9, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19curf2 18182 . 2 (𝜑 → ((𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌)‘𝐹) = (𝑥𝐵 ↦ (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥))))
2110, 9, 13xpcbas 18130 . . . . . . 7 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
22 eqid 2733 . . . . . . 7 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
232adantr 482 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐶 ∈ Cat)
243adantr 482 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐷 ∈ Cat)
25 opelxpi 5714 . . . . . . . 8 ((𝑋𝐴𝑥𝐵) → ⟨𝑋, 𝑥⟩ ∈ (𝐴 × 𝐵))
2616, 25sylan 581 . . . . . . 7 ((𝜑𝑥𝐵) → ⟨𝑋, 𝑥⟩ ∈ (𝐴 × 𝐵))
27 opelxpi 5714 . . . . . . . 8 ((𝑌𝐴𝑥𝐵) → ⟨𝑌, 𝑥⟩ ∈ (𝐴 × 𝐵))
2817, 27sylan 581 . . . . . . 7 ((𝜑𝑥𝐵) → ⟨𝑌, 𝑥⟩ ∈ (𝐴 × 𝐵))
2910, 21, 22, 23, 24, 11, 26, 281stf2 18145 . . . . . 6 ((𝜑𝑥𝐵) → (⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩) = (1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩)))
3029oveqd 7426 . . . . 5 ((𝜑𝑥𝐵) → (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥)) = (𝐹(1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))((Id‘𝐷)‘𝑥)))
31 df-ov 7412 . . . . . 6 (𝐹(1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))((Id‘𝐷)‘𝑥)) = ((1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩)
3218adantr 482 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝐹 ∈ (𝑋𝐻𝑌))
33 eqid 2733 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
34 simpr 486 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑥𝐵)
3513, 33, 15, 24, 34catidcl 17626 . . . . . . . . 9 ((𝜑𝑥𝐵) → ((Id‘𝐷)‘𝑥) ∈ (𝑥(Hom ‘𝐷)𝑥))
3632, 35opelxpd 5716 . . . . . . . 8 ((𝜑𝑥𝐵) → ⟨𝐹, ((Id‘𝐷)‘𝑥)⟩ ∈ ((𝑋𝐻𝑌) × (𝑥(Hom ‘𝐷)𝑥)))
3716adantr 482 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑋𝐴)
3817adantr 482 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑌𝐴)
3910, 9, 13, 14, 33, 37, 34, 38, 34, 22xpchom2 18138 . . . . . . . 8 ((𝜑𝑥𝐵) → (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩) = ((𝑋𝐻𝑌) × (𝑥(Hom ‘𝐷)𝑥)))
4036, 39eleqtrrd 2837 . . . . . . 7 ((𝜑𝑥𝐵) → ⟨𝐹, ((Id‘𝐷)‘𝑥)⟩ ∈ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))
4140fvresd 6912 . . . . . 6 ((𝜑𝑥𝐵) → ((1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩) = (1st ‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩))
4231, 41eqtrid 2785 . . . . 5 ((𝜑𝑥𝐵) → (𝐹(1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))((Id‘𝐷)‘𝑥)) = (1st ‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩))
43 op1stg 7987 . . . . . 6 ((𝐹 ∈ (𝑋𝐻𝑌) ∧ ((Id‘𝐷)‘𝑥) ∈ (𝑥(Hom ‘𝐷)𝑥)) → (1st ‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩) = 𝐹)
4418, 35, 43syl2an2r 684 . . . . 5 ((𝜑𝑥𝐵) → (1st ‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩) = 𝐹)
4530, 42, 443eqtrd 2777 . . . 4 ((𝜑𝑥𝐵) → (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥)) = 𝐹)
4645mpteq2dva 5249 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥))) = (𝑥𝐵𝐹))
47 fconstmpt 5739 . . 3 (𝐵 × {𝐹}) = (𝑥𝐵𝐹)
4846, 47eqtr4di 2791 . 2 (𝜑 → (𝑥𝐵 ↦ (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥))) = (𝐵 × {𝐹}))
497, 20, 483eqtrd 2777 1 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐹) = (𝐵 × {𝐹}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {csn 4629  cop 4635  cmpt 5232   × cxp 5675  cres 5679  cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  Basecbs 17144  Hom chom 17208  Catccat 17608  Idccid 17609   ×c cxpc 18120   1stF c1stf 18121   curryF ccurf 18163  Δfunccdiag 18165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-struct 17080  df-slot 17115  df-ndx 17127  df-base 17145  df-hom 17221  df-cco 17222  df-cat 17612  df-cid 17613  df-func 17808  df-xpc 18124  df-1stf 18125  df-curf 18167  df-diag 18169
This theorem is referenced by:  diag2cl  18199
  Copyright terms: Public domain W3C validator