MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diag2 Structured version   Visualization version   GIF version

Theorem diag2 17879
Description: Value of the diagonal functor at a morphism. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
diag2.l 𝐿 = (𝐶Δfunc𝐷)
diag2.a 𝐴 = (Base‘𝐶)
diag2.b 𝐵 = (Base‘𝐷)
diag2.h 𝐻 = (Hom ‘𝐶)
diag2.c (𝜑𝐶 ∈ Cat)
diag2.d (𝜑𝐷 ∈ Cat)
diag2.x (𝜑𝑋𝐴)
diag2.y (𝜑𝑌𝐴)
diag2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
diag2 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐹) = (𝐵 × {𝐹}))

Proof of Theorem diag2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 diag2.l . . . . . 6 𝐿 = (𝐶Δfunc𝐷)
2 diag2.c . . . . . 6 (𝜑𝐶 ∈ Cat)
3 diag2.d . . . . . 6 (𝜑𝐷 ∈ Cat)
41, 2, 3diagval 17874 . . . . 5 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
54fveq2d 6760 . . . 4 (𝜑 → (2nd𝐿) = (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))))
65oveqd 7272 . . 3 (𝜑 → (𝑋(2nd𝐿)𝑌) = (𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌))
76fveq1d 6758 . 2 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐹) = ((𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌)‘𝐹))
8 eqid 2738 . . 3 (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))
9 diag2.a . . 3 𝐴 = (Base‘𝐶)
10 eqid 2738 . . . 4 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
11 eqid 2738 . . . 4 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
1210, 2, 3, 111stfcl 17830 . . 3 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
13 diag2.b . . 3 𝐵 = (Base‘𝐷)
14 diag2.h . . 3 𝐻 = (Hom ‘𝐶)
15 eqid 2738 . . 3 (Id‘𝐷) = (Id‘𝐷)
16 diag2.x . . 3 (𝜑𝑋𝐴)
17 diag2.y . . 3 (𝜑𝑌𝐴)
18 diag2.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
19 eqid 2738 . . 3 ((𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌)‘𝐹) = ((𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌)‘𝐹)
208, 9, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19curf2 17863 . 2 (𝜑 → ((𝑋(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))𝑌)‘𝐹) = (𝑥𝐵 ↦ (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥))))
2110, 9, 13xpcbas 17811 . . . . . . 7 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
22 eqid 2738 . . . . . . 7 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
232adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐶 ∈ Cat)
243adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐷 ∈ Cat)
25 opelxpi 5617 . . . . . . . 8 ((𝑋𝐴𝑥𝐵) → ⟨𝑋, 𝑥⟩ ∈ (𝐴 × 𝐵))
2616, 25sylan 579 . . . . . . 7 ((𝜑𝑥𝐵) → ⟨𝑋, 𝑥⟩ ∈ (𝐴 × 𝐵))
27 opelxpi 5617 . . . . . . . 8 ((𝑌𝐴𝑥𝐵) → ⟨𝑌, 𝑥⟩ ∈ (𝐴 × 𝐵))
2817, 27sylan 579 . . . . . . 7 ((𝜑𝑥𝐵) → ⟨𝑌, 𝑥⟩ ∈ (𝐴 × 𝐵))
2910, 21, 22, 23, 24, 11, 26, 281stf2 17826 . . . . . 6 ((𝜑𝑥𝐵) → (⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩) = (1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩)))
3029oveqd 7272 . . . . 5 ((𝜑𝑥𝐵) → (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥)) = (𝐹(1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))((Id‘𝐷)‘𝑥)))
31 df-ov 7258 . . . . . 6 (𝐹(1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))((Id‘𝐷)‘𝑥)) = ((1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩)
3218adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝐹 ∈ (𝑋𝐻𝑌))
33 eqid 2738 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
34 simpr 484 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑥𝐵)
3513, 33, 15, 24, 34catidcl 17308 . . . . . . . . 9 ((𝜑𝑥𝐵) → ((Id‘𝐷)‘𝑥) ∈ (𝑥(Hom ‘𝐷)𝑥))
3632, 35opelxpd 5618 . . . . . . . 8 ((𝜑𝑥𝐵) → ⟨𝐹, ((Id‘𝐷)‘𝑥)⟩ ∈ ((𝑋𝐻𝑌) × (𝑥(Hom ‘𝐷)𝑥)))
3716adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑋𝐴)
3817adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑌𝐴)
3910, 9, 13, 14, 33, 37, 34, 38, 34, 22xpchom2 17819 . . . . . . . 8 ((𝜑𝑥𝐵) → (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩) = ((𝑋𝐻𝑌) × (𝑥(Hom ‘𝐷)𝑥)))
4036, 39eleqtrrd 2842 . . . . . . 7 ((𝜑𝑥𝐵) → ⟨𝐹, ((Id‘𝐷)‘𝑥)⟩ ∈ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))
4140fvresd 6776 . . . . . 6 ((𝜑𝑥𝐵) → ((1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩) = (1st ‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩))
4231, 41eqtrid 2790 . . . . 5 ((𝜑𝑥𝐵) → (𝐹(1st ↾ (⟨𝑋, 𝑥⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑥⟩))((Id‘𝐷)‘𝑥)) = (1st ‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩))
43 op1stg 7816 . . . . . 6 ((𝐹 ∈ (𝑋𝐻𝑌) ∧ ((Id‘𝐷)‘𝑥) ∈ (𝑥(Hom ‘𝐷)𝑥)) → (1st ‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩) = 𝐹)
4418, 35, 43syl2an2r 681 . . . . 5 ((𝜑𝑥𝐵) → (1st ‘⟨𝐹, ((Id‘𝐷)‘𝑥)⟩) = 𝐹)
4530, 42, 443eqtrd 2782 . . . 4 ((𝜑𝑥𝐵) → (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥)) = 𝐹)
4645mpteq2dva 5170 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥))) = (𝑥𝐵𝐹))
47 fconstmpt 5640 . . 3 (𝐵 × {𝐹}) = (𝑥𝐵𝐹)
4846, 47eqtr4di 2797 . 2 (𝜑 → (𝑥𝐵 ↦ (𝐹(⟨𝑋, 𝑥⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑌, 𝑥⟩)((Id‘𝐷)‘𝑥))) = (𝐵 × {𝐹}))
497, 20, 483eqtrd 2782 1 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐹) = (𝐵 × {𝐹}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {csn 4558  cop 4564  cmpt 5153   × cxp 5578  cres 5582  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Basecbs 16840  Hom chom 16899  Catccat 17290  Idccid 17291   ×c cxpc 17801   1stF c1stf 17802   curryF ccurf 17844  Δfunccdiag 17846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-cat 17294  df-cid 17295  df-func 17489  df-xpc 17805  df-1stf 17806  df-curf 17848  df-diag 17850
This theorem is referenced by:  diag2cl  17880
  Copyright terms: Public domain W3C validator