MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diag11 Structured version   Visualization version   GIF version

Theorem diag11 18167
Description: Value of the constant functor at an object. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l 𝐿 = (𝐶Δfunc𝐷)
diagval.c (𝜑𝐶 ∈ Cat)
diagval.d (𝜑𝐷 ∈ Cat)
diag11.a 𝐴 = (Base‘𝐶)
diag11.c (𝜑𝑋𝐴)
diag11.k 𝐾 = ((1st𝐿)‘𝑋)
diag11.b 𝐵 = (Base‘𝐷)
diag11.y (𝜑𝑌𝐵)
Assertion
Ref Expression
diag11 (𝜑 → ((1st𝐾)‘𝑌) = 𝑋)

Proof of Theorem diag11
StepHypRef Expression
1 diag11.k . . . . 5 𝐾 = ((1st𝐿)‘𝑋)
2 diagval.l . . . . . . . 8 𝐿 = (𝐶Δfunc𝐷)
3 diagval.c . . . . . . . 8 (𝜑𝐶 ∈ Cat)
4 diagval.d . . . . . . . 8 (𝜑𝐷 ∈ Cat)
52, 3, 4diagval 18164 . . . . . . 7 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
65fveq2d 6830 . . . . . 6 (𝜑 → (1st𝐿) = (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))))
76fveq1d 6828 . . . . 5 (𝜑 → ((1st𝐿)‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))
81, 7eqtrid 2776 . . . 4 (𝜑𝐾 = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))
98fveq2d 6830 . . 3 (𝜑 → (1st𝐾) = (1st ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)))
109fveq1d 6828 . 2 (𝜑 → ((1st𝐾)‘𝑌) = ((1st ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌))
11 eqid 2729 . . 3 (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))
12 diag11.a . . 3 𝐴 = (Base‘𝐶)
13 eqid 2729 . . . 4 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
14 eqid 2729 . . . 4 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
1513, 3, 4, 141stfcl 18121 . . 3 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
16 diag11.b . . 3 𝐵 = (Base‘𝐷)
17 diag11.c . . 3 (𝜑𝑋𝐴)
18 eqid 2729 . . 3 ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)
19 diag11.y . . 3 (𝜑𝑌𝐵)
2011, 12, 3, 4, 15, 16, 17, 18, 19curf11 18150 . 2 (𝜑 → ((1st ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌) = (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌))
21 df-ov 7356 . . . 4 (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)
2213, 12, 16xpcbas 18102 . . . . 5 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
23 eqid 2729 . . . . 5 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
2417, 19opelxpd 5662 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
2513, 22, 23, 3, 4, 14, 241stf1 18116 . . . 4 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩) = (1st ‘⟨𝑋, 𝑌⟩))
2621, 25eqtrid 2776 . . 3 (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = (1st ‘⟨𝑋, 𝑌⟩))
27 op1stg 7943 . . . 4 ((𝑋𝐴𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2817, 19, 27syl2anc 584 . . 3 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2926, 28eqtrd 2764 . 2 (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = 𝑋)
3010, 20, 293eqtrd 2768 1 (𝜑 → ((1st𝐾)‘𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4585   × cxp 5621  cfv 6486  (class class class)co 7353  1st c1st 7929  Basecbs 17138  Hom chom 17190  Catccat 17588   ×c cxpc 18092   1stF c1stf 18093   curryF ccurf 18134  Δfunccdiag 18136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-hom 17203  df-cco 17204  df-cat 17592  df-cid 17593  df-func 17783  df-xpc 18096  df-1stf 18097  df-curf 18138  df-diag 18140
This theorem is referenced by:  curf2ndf  18171  diag1  49293  prcofdiag1  49382  oppfdiag1  49403  isinito2lem  49487  isinito3  49489  diag2f1olem  49525  concl  49650  coccl  49651  concom  49652  coccom  49653  islmd  49654  iscmd  49655
  Copyright terms: Public domain W3C validator