| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > diag11 | Structured version Visualization version GIF version | ||
| Description: Value of the constant functor at an object. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
| Ref | Expression |
|---|---|
| diagval.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| diagval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diagval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| diag11.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag11.c | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| diag11.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
| diag11.b | ⊢ 𝐵 = (Base‘𝐷) |
| diag11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| diag11 | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag11.k | . . . . 5 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
| 2 | diagval.l | . . . . . . . 8 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 3 | diagval.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | diagval.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 5 | 2, 3, 4 | diagval 18285 | . . . . . . 7 ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
| 6 | 5 | fveq2d 6910 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐿) = (1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))) |
| 7 | 6 | fveq1d 6908 | . . . . 5 ⊢ (𝜑 → ((1st ‘𝐿)‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋)) |
| 8 | 1, 7 | eqtrid 2789 | . . . 4 ⊢ (𝜑 → 𝐾 = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋)) |
| 9 | 8 | fveq2d 6910 | . . 3 ⊢ (𝜑 → (1st ‘𝐾) = (1st ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))) |
| 10 | 9 | fveq1d 6908 | . 2 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = ((1st ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌)) |
| 11 | eqid 2737 | . . 3 ⊢ (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) | |
| 12 | diag11.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 13 | eqid 2737 | . . . 4 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
| 14 | eqid 2737 | . . . 4 ⊢ (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷) | |
| 15 | 13, 3, 4, 14 | 1stfcl 18242 | . . 3 ⊢ (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶)) |
| 16 | diag11.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 17 | diag11.c | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 18 | eqid 2737 | . . 3 ⊢ ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋) | |
| 19 | diag11.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 20 | 11, 12, 3, 4, 15, 16, 17, 18, 19 | curf11 18271 | . 2 ⊢ (𝜑 → ((1st ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌) = (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌)) |
| 21 | df-ov 7434 | . . . 4 ⊢ (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = ((1st ‘(𝐶 1stF 𝐷))‘〈𝑋, 𝑌〉) | |
| 22 | 13, 12, 16 | xpcbas 18223 | . . . . 5 ⊢ (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷)) |
| 23 | eqid 2737 | . . . . 5 ⊢ (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) | |
| 24 | 17, 19 | opelxpd 5724 | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐴 × 𝐵)) |
| 25 | 13, 22, 23, 3, 4, 14, 24 | 1stf1 18237 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘〈𝑋, 𝑌〉) = (1st ‘〈𝑋, 𝑌〉)) |
| 26 | 21, 25 | eqtrid 2789 | . . 3 ⊢ (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = (1st ‘〈𝑋, 𝑌〉)) |
| 27 | op1stg 8026 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
| 28 | 17, 19, 27 | syl2anc 584 | . . 3 ⊢ (𝜑 → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
| 29 | 26, 28 | eqtrd 2777 | . 2 ⊢ (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = 𝑋) |
| 30 | 10, 20, 29 | 3eqtrd 2781 | 1 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 〈cop 4632 × cxp 5683 ‘cfv 6561 (class class class)co 7431 1st c1st 8012 Basecbs 17247 Hom chom 17308 Catccat 17707 ×c cxpc 18213 1stF c1stf 18214 curryF ccurf 18255 Δfunccdiag 18257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-hom 17321 df-cco 17322 df-cat 17711 df-cid 17712 df-func 17903 df-xpc 18217 df-1stf 18218 df-curf 18259 df-diag 18261 |
| This theorem is referenced by: curf2ndf 18292 diag1 49004 |
| Copyright terms: Public domain | W3C validator |