MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diag11 Structured version   Visualization version   GIF version

Theorem diag11 18204
Description: Value of the constant functor at an object. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l 𝐿 = (𝐶Δfunc𝐷)
diagval.c (𝜑𝐶 ∈ Cat)
diagval.d (𝜑𝐷 ∈ Cat)
diag11.a 𝐴 = (Base‘𝐶)
diag11.c (𝜑𝑋𝐴)
diag11.k 𝐾 = ((1st𝐿)‘𝑋)
diag11.b 𝐵 = (Base‘𝐷)
diag11.y (𝜑𝑌𝐵)
Assertion
Ref Expression
diag11 (𝜑 → ((1st𝐾)‘𝑌) = 𝑋)

Proof of Theorem diag11
StepHypRef Expression
1 diag11.k . . . . 5 𝐾 = ((1st𝐿)‘𝑋)
2 diagval.l . . . . . . . 8 𝐿 = (𝐶Δfunc𝐷)
3 diagval.c . . . . . . . 8 (𝜑𝐶 ∈ Cat)
4 diagval.d . . . . . . . 8 (𝜑𝐷 ∈ Cat)
52, 3, 4diagval 18201 . . . . . . 7 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
65fveq2d 6862 . . . . . 6 (𝜑 → (1st𝐿) = (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))))
76fveq1d 6860 . . . . 5 (𝜑 → ((1st𝐿)‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))
81, 7eqtrid 2776 . . . 4 (𝜑𝐾 = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))
98fveq2d 6862 . . 3 (𝜑 → (1st𝐾) = (1st ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)))
109fveq1d 6860 . 2 (𝜑 → ((1st𝐾)‘𝑌) = ((1st ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌))
11 eqid 2729 . . 3 (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))
12 diag11.a . . 3 𝐴 = (Base‘𝐶)
13 eqid 2729 . . . 4 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
14 eqid 2729 . . . 4 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
1513, 3, 4, 141stfcl 18158 . . 3 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
16 diag11.b . . 3 𝐵 = (Base‘𝐷)
17 diag11.c . . 3 (𝜑𝑋𝐴)
18 eqid 2729 . . 3 ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)
19 diag11.y . . 3 (𝜑𝑌𝐵)
2011, 12, 3, 4, 15, 16, 17, 18, 19curf11 18187 . 2 (𝜑 → ((1st ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌) = (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌))
21 df-ov 7390 . . . 4 (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)
2213, 12, 16xpcbas 18139 . . . . 5 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
23 eqid 2729 . . . . 5 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
2417, 19opelxpd 5677 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
2513, 22, 23, 3, 4, 14, 241stf1 18153 . . . 4 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩) = (1st ‘⟨𝑋, 𝑌⟩))
2621, 25eqtrid 2776 . . 3 (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = (1st ‘⟨𝑋, 𝑌⟩))
27 op1stg 7980 . . . 4 ((𝑋𝐴𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2817, 19, 27syl2anc 584 . . 3 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2926, 28eqtrd 2764 . 2 (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = 𝑋)
3010, 20, 293eqtrd 2768 1 (𝜑 → ((1st𝐾)‘𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4595   × cxp 5636  cfv 6511  (class class class)co 7387  1st c1st 7966  Basecbs 17179  Hom chom 17231  Catccat 17625   ×c cxpc 18129   1stF c1stf 18130   curryF ccurf 18171  Δfunccdiag 18173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-func 17820  df-xpc 18133  df-1stf 18134  df-curf 18175  df-diag 18177
This theorem is referenced by:  curf2ndf  18208  diag1  49293  prcofdiag1  49382  oppfdiag1  49403  isinito2lem  49487  isinito3  49489  diag2f1olem  49525  concl  49650  coccl  49651  concom  49652  coccom  49653  islmd  49654  iscmd  49655
  Copyright terms: Public domain W3C validator