MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diag11 Structured version   Visualization version   GIF version

Theorem diag11 18211
Description: Value of the constant functor at an object. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l 𝐿 = (𝐶Δfunc𝐷)
diagval.c (𝜑𝐶 ∈ Cat)
diagval.d (𝜑𝐷 ∈ Cat)
diag11.a 𝐴 = (Base‘𝐶)
diag11.c (𝜑𝑋𝐴)
diag11.k 𝐾 = ((1st𝐿)‘𝑋)
diag11.b 𝐵 = (Base‘𝐷)
diag11.y (𝜑𝑌𝐵)
Assertion
Ref Expression
diag11 (𝜑 → ((1st𝐾)‘𝑌) = 𝑋)

Proof of Theorem diag11
StepHypRef Expression
1 diag11.k . . . . 5 𝐾 = ((1st𝐿)‘𝑋)
2 diagval.l . . . . . . . 8 𝐿 = (𝐶Δfunc𝐷)
3 diagval.c . . . . . . . 8 (𝜑𝐶 ∈ Cat)
4 diagval.d . . . . . . . 8 (𝜑𝐷 ∈ Cat)
52, 3, 4diagval 18208 . . . . . . 7 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
65fveq2d 6865 . . . . . 6 (𝜑 → (1st𝐿) = (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))))
76fveq1d 6863 . . . . 5 (𝜑 → ((1st𝐿)‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))
81, 7eqtrid 2777 . . . 4 (𝜑𝐾 = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))
98fveq2d 6865 . . 3 (𝜑 → (1st𝐾) = (1st ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)))
109fveq1d 6863 . 2 (𝜑 → ((1st𝐾)‘𝑌) = ((1st ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌))
11 eqid 2730 . . 3 (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))
12 diag11.a . . 3 𝐴 = (Base‘𝐶)
13 eqid 2730 . . . 4 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
14 eqid 2730 . . . 4 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
1513, 3, 4, 141stfcl 18165 . . 3 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
16 diag11.b . . 3 𝐵 = (Base‘𝐷)
17 diag11.c . . 3 (𝜑𝑋𝐴)
18 eqid 2730 . . 3 ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)
19 diag11.y . . 3 (𝜑𝑌𝐵)
2011, 12, 3, 4, 15, 16, 17, 18, 19curf11 18194 . 2 (𝜑 → ((1st ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌) = (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌))
21 df-ov 7393 . . . 4 (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)
2213, 12, 16xpcbas 18146 . . . . 5 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
23 eqid 2730 . . . . 5 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
2417, 19opelxpd 5680 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
2513, 22, 23, 3, 4, 14, 241stf1 18160 . . . 4 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩) = (1st ‘⟨𝑋, 𝑌⟩))
2621, 25eqtrid 2777 . . 3 (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = (1st ‘⟨𝑋, 𝑌⟩))
27 op1stg 7983 . . . 4 ((𝑋𝐴𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2817, 19, 27syl2anc 584 . . 3 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2926, 28eqtrd 2765 . 2 (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = 𝑋)
3010, 20, 293eqtrd 2769 1 (𝜑 → ((1st𝐾)‘𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4598   × cxp 5639  cfv 6514  (class class class)co 7390  1st c1st 7969  Basecbs 17186  Hom chom 17238  Catccat 17632   ×c cxpc 18136   1stF c1stf 18137   curryF ccurf 18178  Δfunccdiag 18180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-cat 17636  df-cid 17637  df-func 17827  df-xpc 18140  df-1stf 18141  df-curf 18182  df-diag 18184
This theorem is referenced by:  curf2ndf  18215  diag1  49297  prcofdiag1  49386  oppfdiag1  49407  isinito2lem  49491  isinito3  49493  diag2f1olem  49529  concl  49654  coccl  49655  concom  49656  coccom  49657  islmd  49658  iscmd  49659
  Copyright terms: Public domain W3C validator