Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > diag11 | Structured version Visualization version GIF version |
Description: Value of the constant functor at an object. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
diagval.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
diagval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
diagval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
diag11.a | ⊢ 𝐴 = (Base‘𝐶) |
diag11.c | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
diag11.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
diag11.b | ⊢ 𝐵 = (Base‘𝐷) |
diag11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
diag11 | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diag11.k | . . . . 5 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
2 | diagval.l | . . . . . . . 8 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
3 | diagval.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | diagval.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
5 | 2, 3, 4 | diagval 17874 | . . . . . . 7 ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
6 | 5 | fveq2d 6760 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐿) = (1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))) |
7 | 6 | fveq1d 6758 | . . . . 5 ⊢ (𝜑 → ((1st ‘𝐿)‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋)) |
8 | 1, 7 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → 𝐾 = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋)) |
9 | 8 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (1st ‘𝐾) = (1st ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))) |
10 | 9 | fveq1d 6758 | . 2 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = ((1st ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌)) |
11 | eqid 2738 | . . 3 ⊢ (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) | |
12 | diag11.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
13 | eqid 2738 | . . . 4 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
14 | eqid 2738 | . . . 4 ⊢ (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷) | |
15 | 13, 3, 4, 14 | 1stfcl 17830 | . . 3 ⊢ (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶)) |
16 | diag11.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
17 | diag11.c | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
18 | eqid 2738 | . . 3 ⊢ ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋) | |
19 | diag11.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
20 | 11, 12, 3, 4, 15, 16, 17, 18, 19 | curf11 17860 | . 2 ⊢ (𝜑 → ((1st ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌) = (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌)) |
21 | df-ov 7258 | . . . 4 ⊢ (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = ((1st ‘(𝐶 1stF 𝐷))‘〈𝑋, 𝑌〉) | |
22 | 13, 12, 16 | xpcbas 17811 | . . . . 5 ⊢ (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷)) |
23 | eqid 2738 | . . . . 5 ⊢ (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) | |
24 | 17, 19 | opelxpd 5618 | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐴 × 𝐵)) |
25 | 13, 22, 23, 3, 4, 14, 24 | 1stf1 17825 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘〈𝑋, 𝑌〉) = (1st ‘〈𝑋, 𝑌〉)) |
26 | 21, 25 | eqtrid 2790 | . . 3 ⊢ (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = (1st ‘〈𝑋, 𝑌〉)) |
27 | op1stg 7816 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
28 | 17, 19, 27 | syl2anc 583 | . . 3 ⊢ (𝜑 → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
29 | 26, 28 | eqtrd 2778 | . 2 ⊢ (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = 𝑋) |
30 | 10, 20, 29 | 3eqtrd 2782 | 1 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4564 × cxp 5578 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 Basecbs 16840 Hom chom 16899 Catccat 17290 ×c cxpc 17801 1stF c1stf 17802 curryF ccurf 17844 Δfunccdiag 17846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-hom 16912 df-cco 16913 df-cat 17294 df-cid 17295 df-func 17489 df-xpc 17805 df-1stf 17806 df-curf 17848 df-diag 17850 |
This theorem is referenced by: curf2ndf 17881 |
Copyright terms: Public domain | W3C validator |