![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > diag11 | Structured version Visualization version GIF version |
Description: Value of the constant functor at an object. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
diagval.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
diagval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
diagval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
diag11.a | ⊢ 𝐴 = (Base‘𝐶) |
diag11.c | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
diag11.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
diag11.b | ⊢ 𝐵 = (Base‘𝐷) |
diag11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
diag11 | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diag11.k | . . . . 5 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
2 | diagval.l | . . . . . . . 8 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
3 | diagval.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | diagval.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
5 | 2, 3, 4 | diagval 18267 | . . . . . . 7 ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
6 | 5 | fveq2d 6907 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐿) = (1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))) |
7 | 6 | fveq1d 6905 | . . . . 5 ⊢ (𝜑 → ((1st ‘𝐿)‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋)) |
8 | 1, 7 | eqtrid 2778 | . . . 4 ⊢ (𝜑 → 𝐾 = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋)) |
9 | 8 | fveq2d 6907 | . . 3 ⊢ (𝜑 → (1st ‘𝐾) = (1st ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))) |
10 | 9 | fveq1d 6905 | . 2 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = ((1st ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌)) |
11 | eqid 2726 | . . 3 ⊢ (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) | |
12 | diag11.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
13 | eqid 2726 | . . . 4 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
14 | eqid 2726 | . . . 4 ⊢ (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷) | |
15 | 13, 3, 4, 14 | 1stfcl 18223 | . . 3 ⊢ (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶)) |
16 | diag11.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
17 | diag11.c | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
18 | eqid 2726 | . . 3 ⊢ ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋) | |
19 | diag11.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
20 | 11, 12, 3, 4, 15, 16, 17, 18, 19 | curf11 18253 | . 2 ⊢ (𝜑 → ((1st ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌) = (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌)) |
21 | df-ov 7429 | . . . 4 ⊢ (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = ((1st ‘(𝐶 1stF 𝐷))‘〈𝑋, 𝑌〉) | |
22 | 13, 12, 16 | xpcbas 18204 | . . . . 5 ⊢ (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷)) |
23 | eqid 2726 | . . . . 5 ⊢ (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) | |
24 | 17, 19 | opelxpd 5723 | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐴 × 𝐵)) |
25 | 13, 22, 23, 3, 4, 14, 24 | 1stf1 18218 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘〈𝑋, 𝑌〉) = (1st ‘〈𝑋, 𝑌〉)) |
26 | 21, 25 | eqtrid 2778 | . . 3 ⊢ (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = (1st ‘〈𝑋, 𝑌〉)) |
27 | op1stg 8017 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
28 | 17, 19, 27 | syl2anc 582 | . . 3 ⊢ (𝜑 → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
29 | 26, 28 | eqtrd 2766 | . 2 ⊢ (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = 𝑋) |
30 | 10, 20, 29 | 3eqtrd 2770 | 1 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 〈cop 4639 × cxp 5682 ‘cfv 6556 (class class class)co 7426 1st c1st 8003 Basecbs 17215 Hom chom 17279 Catccat 17679 ×c cxpc 18194 1stF c1stf 18195 curryF ccurf 18237 Δfunccdiag 18239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8005 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-1o 8498 df-er 8736 df-map 8859 df-ixp 8929 df-en 8977 df-dom 8978 df-sdom 8979 df-fin 8980 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12613 df-dec 12732 df-uz 12877 df-fz 13541 df-struct 17151 df-slot 17186 df-ndx 17198 df-base 17216 df-hom 17292 df-cco 17293 df-cat 17683 df-cid 17684 df-func 17879 df-xpc 18198 df-1stf 18199 df-curf 18241 df-diag 18243 |
This theorem is referenced by: curf2ndf 18274 |
Copyright terms: Public domain | W3C validator |