| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > diag11 | Structured version Visualization version GIF version | ||
| Description: Value of the constant functor at an object. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
| Ref | Expression |
|---|---|
| diagval.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| diagval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diagval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| diag11.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag11.c | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| diag11.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
| diag11.b | ⊢ 𝐵 = (Base‘𝐷) |
| diag11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| diag11 | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag11.k | . . . . 5 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
| 2 | diagval.l | . . . . . . . 8 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 3 | diagval.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | diagval.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 5 | 2, 3, 4 | diagval 18154 | . . . . . . 7 ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) |
| 6 | 5 | fveq2d 6835 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐿) = (1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))) |
| 7 | 6 | fveq1d 6833 | . . . . 5 ⊢ (𝜑 → ((1st ‘𝐿)‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋)) |
| 8 | 1, 7 | eqtrid 2780 | . . . 4 ⊢ (𝜑 → 𝐾 = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋)) |
| 9 | 8 | fveq2d 6835 | . . 3 ⊢ (𝜑 → (1st ‘𝐾) = (1st ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))) |
| 10 | 9 | fveq1d 6833 | . 2 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = ((1st ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌)) |
| 11 | eqid 2733 | . . 3 ⊢ (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)) | |
| 12 | diag11.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 13 | eqid 2733 | . . . 4 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
| 14 | eqid 2733 | . . . 4 ⊢ (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷) | |
| 15 | 13, 3, 4, 14 | 1stfcl 18111 | . . 3 ⊢ (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶)) |
| 16 | diag11.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 17 | diag11.c | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 18 | eqid 2733 | . . 3 ⊢ ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋) | |
| 19 | diag11.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 20 | 11, 12, 3, 4, 15, 16, 17, 18, 19 | curf11 18140 | . 2 ⊢ (𝜑 → ((1st ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌) = (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌)) |
| 21 | df-ov 7358 | . . . 4 ⊢ (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = ((1st ‘(𝐶 1stF 𝐷))‘〈𝑋, 𝑌〉) | |
| 22 | 13, 12, 16 | xpcbas 18092 | . . . . 5 ⊢ (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷)) |
| 23 | eqid 2733 | . . . . 5 ⊢ (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) | |
| 24 | 17, 19 | opelxpd 5660 | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐴 × 𝐵)) |
| 25 | 13, 22, 23, 3, 4, 14, 24 | 1stf1 18106 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘〈𝑋, 𝑌〉) = (1st ‘〈𝑋, 𝑌〉)) |
| 26 | 21, 25 | eqtrid 2780 | . . 3 ⊢ (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = (1st ‘〈𝑋, 𝑌〉)) |
| 27 | op1stg 7942 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
| 28 | 17, 19, 27 | syl2anc 584 | . . 3 ⊢ (𝜑 → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
| 29 | 26, 28 | eqtrd 2768 | . 2 ⊢ (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = 𝑋) |
| 30 | 10, 20, 29 | 3eqtrd 2772 | 1 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 〈cop 4583 × cxp 5619 ‘cfv 6489 (class class class)co 7355 1st c1st 7928 Basecbs 17127 Hom chom 17179 Catccat 17578 ×c cxpc 18082 1stF c1stf 18083 curryF ccurf 18124 Δfunccdiag 18126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-hom 17192 df-cco 17193 df-cat 17582 df-cid 17583 df-func 17773 df-xpc 18086 df-1stf 18087 df-curf 18128 df-diag 18130 |
| This theorem is referenced by: curf2ndf 18161 diag1 49465 prcofdiag1 49554 oppfdiag1 49575 isinito2lem 49659 isinito3 49661 diag2f1olem 49697 concl 49822 coccl 49823 concom 49824 coccom 49825 islmd 49826 iscmd 49827 |
| Copyright terms: Public domain | W3C validator |