MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfcurf Structured version   Visualization version   GIF version

Theorem uncfcurf 17491
Description: Cancellation of uncurry with curry. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfcurf.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
uncfcurf.c (𝜑𝐶 ∈ Cat)
uncfcurf.d (𝜑𝐷 ∈ Cat)
uncfcurf.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
Assertion
Ref Expression
uncfcurf (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = 𝐹)

Proof of Theorem uncfcurf
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . . . . 7 (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 uncfcurf.d . . . . . . . 8 (𝜑𝐷 ∈ Cat)
32adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐷 ∈ Cat)
4 uncfcurf.f . . . . . . . . . 10 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
5 funcrcl 17135 . . . . . . . . . 10 (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
64, 5syl 17 . . . . . . . . 9 (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
76simprd 498 . . . . . . . 8 (𝜑𝐸 ∈ Cat)
87adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐸 ∈ Cat)
9 uncfcurf.g . . . . . . . . 9 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
10 eqid 2823 . . . . . . . . 9 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
11 uncfcurf.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
129, 10, 11, 2, 4curfcl 17484 . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
1312adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
14 eqid 2823 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
15 eqid 2823 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
16 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶))
17 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
181, 3, 8, 13, 14, 15, 16, 17uncf1 17488 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = ((1st ‘((1st𝐺)‘𝑥))‘𝑦))
1911adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐶 ∈ Cat)
204adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
21 eqid 2823 . . . . . . 7 ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑥)
229, 14, 19, 3, 20, 15, 16, 21, 17curf11 17478 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = (𝑥(1st𝐹)𝑦))
2318, 22eqtrd 2858 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦))
2423ralrimivva 3193 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦))
25 eqid 2823 . . . . . . . 8 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
2625, 14, 15xpcbas 17430 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
27 eqid 2823 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
28 relfunc 17134 . . . . . . . 8 Rel ((𝐶 ×c 𝐷) Func 𝐸)
291, 2, 7, 12uncfcl 17487 . . . . . . . 8 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) ∈ ((𝐶 ×c 𝐷) Func 𝐸))
30 1st2ndbr 7743 . . . . . . . 8 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)))
3128, 29, 30sylancr 589 . . . . . . 7 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)))
3226, 27, 31funcf1 17138 . . . . . 6 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐸))
3332ffnd 6517 . . . . 5 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn ((Base‘𝐶) × (Base‘𝐷)))
34 1st2ndbr 7743 . . . . . . . 8 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3528, 4, 34sylancr 589 . . . . . . 7 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3626, 27, 35funcf1 17138 . . . . . 6 (𝜑 → (1st𝐹):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐸))
3736ffnd 6517 . . . . 5 (𝜑 → (1st𝐹) Fn ((Base‘𝐶) × (Base‘𝐷)))
38 eqfnov2 7283 . . . . 5 (((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn ((Base‘𝐶) × (Base‘𝐷)) ∧ (1st𝐹) Fn ((Base‘𝐶) × (Base‘𝐷))) → ((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (1st𝐹) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦)))
3933, 37, 38syl2anc 586 . . . 4 (𝜑 → ((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (1st𝐹) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦)))
4024, 39mpbird 259 . . 3 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (1st𝐹))
412ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐷 ∈ Cat)
427ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐸 ∈ Cat)
4312ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
4416adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶))
4544adantr 483 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑥 ∈ (Base‘𝐶))
4617adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
4746adantr 483 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑦 ∈ (Base‘𝐷))
48 eqid 2823 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
49 eqid 2823 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
50 simprl 769 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑧 ∈ (Base‘𝐶))
5150adantr 483 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑧 ∈ (Base‘𝐶))
52 simprr 771 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑤 ∈ (Base‘𝐷))
5352adantr 483 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑤 ∈ (Base‘𝐷))
54 simprl 769 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧))
55 simprr 771 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))
561, 41, 42, 43, 14, 15, 45, 47, 48, 49, 51, 53, 54, 55uncf2 17489 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = ((((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔)))
5711ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐶 ∈ Cat)
584ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
599, 14, 57, 41, 58, 15, 45, 21, 47curf11 17478 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = (𝑥(1st𝐹)𝑦))
60 df-ov 7161 . . . . . . . . . . . . . . 15 (𝑥(1st𝐹)𝑦) = ((1st𝐹)‘⟨𝑥, 𝑦⟩)
6159, 60syl6eq 2874 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = ((1st𝐹)‘⟨𝑥, 𝑦⟩))
629, 14, 57, 41, 58, 15, 45, 21, 53curf11 17478 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = (𝑥(1st𝐹)𝑤))
63 df-ov 7161 . . . . . . . . . . . . . . 15 (𝑥(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩)
6462, 63syl6eq 2874 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩))
6561, 64opeq12d 4813 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩ = ⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩)
66 eqid 2823 . . . . . . . . . . . . . . 15 ((1st𝐺)‘𝑧) = ((1st𝐺)‘𝑧)
679, 14, 57, 41, 58, 15, 51, 66, 53curf11 17478 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = (𝑧(1st𝐹)𝑤))
68 df-ov 7161 . . . . . . . . . . . . . 14 (𝑧(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩)
6967, 68syl6eq 2874 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩))
7065, 69oveq12d 7176 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤)) = (⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
71 eqid 2823 . . . . . . . . . . . . . 14 (Id‘𝐷) = (Id‘𝐷)
72 eqid 2823 . . . . . . . . . . . . . 14 ((𝑥(2nd𝐺)𝑧)‘𝑓) = ((𝑥(2nd𝐺)𝑧)‘𝑓)
739, 14, 57, 41, 58, 15, 48, 71, 45, 51, 54, 72, 53curf2val 17482 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤) = (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)))
74 df-ov 7161 . . . . . . . . . . . . 13 (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)
7573, 74syl6eq 2874 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩))
76 eqid 2823 . . . . . . . . . . . . . 14 (Id‘𝐶) = (Id‘𝐶)
779, 14, 57, 41, 58, 15, 45, 21, 47, 49, 76, 53, 55curf12 17479 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔) = (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)𝑔))
78 df-ov 7161 . . . . . . . . . . . . 13 (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)𝑔) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩)
7977, 78syl6eq 2874 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩))
8070, 75, 79oveq123d 7179 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔)) = (((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩)))
81 eqid 2823 . . . . . . . . . . . 12 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
82 eqid 2823 . . . . . . . . . . . 12 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
83 eqid 2823 . . . . . . . . . . . 12 (comp‘𝐸) = (comp‘𝐸)
8435ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
8584adantr 483 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
86 opelxpi 5594 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
8786ad2antlr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
8887adantr 483 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
8945, 53opelxpd 5595 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑥, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
90 opelxpi 5594 . . . . . . . . . . . . . 14 ((𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
9190adantl 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
9291adantr 483 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
9314, 48, 76, 57, 45catidcl 16955 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
9493, 55opelxpd 5595 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑥), 𝑔⟩ ∈ ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑤)))
9525, 14, 15, 48, 49, 45, 47, 45, 53, 81xpchom2 17438 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑤)))
9694, 95eleqtrrd 2918 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑥), 𝑔⟩ ∈ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑤⟩))
9715, 49, 71, 41, 53catidcl 16955 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((Id‘𝐷)‘𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤))
9854, 97opelxpd 5595 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
9925, 14, 15, 48, 49, 45, 53, 51, 53, 81xpchom2 17438 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
10098, 99eleqtrrd 2918 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩))
10126, 81, 82, 83, 85, 88, 89, 92, 96, 100funcco 17143 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = (((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩)))
102 eqid 2823 . . . . . . . . . . . . . . 15 (comp‘𝐶) = (comp‘𝐶)
103 eqid 2823 . . . . . . . . . . . . . . 15 (comp‘𝐷) = (comp‘𝐷)
10425, 14, 15, 48, 49, 45, 47, 45, 53, 102, 103, 82, 51, 53, 93, 55, 54, 97xpcco2 17439 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩) = ⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩)
105104fveq2d 6676 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩))
106 df-ov 7161 . . . . . . . . . . . . 13 ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩)
107105, 106syl6eqr 2876 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)))
10814, 48, 76, 57, 45, 102, 51, 54catrid 16957 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)) = 𝑓)
10915, 49, 71, 41, 47, 103, 53, 55catlid 16956 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔) = 𝑔)
110108, 109oveq12d 7176 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
111107, 110eqtrd 2858 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
11280, 101, 1113eqtr2d 2864 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔)) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
11356, 112eqtrd 2858 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
114113ralrimivva 3193 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
115 eqid 2823 . . . . . . . . . . . 12 (Hom ‘𝐸) = (Hom ‘𝐸)
11631ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)))
11726, 81, 115, 116, 87, 91funcf2 17140 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩)))
11825, 14, 15, 48, 49, 44, 46, 50, 52, 81xpchom2 17438 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)))
119118feq2d 6502 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩))))
120117, 119mpbid 234 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩)))
121120ffnd 6517 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)))
12226, 81, 115, 84, 87, 91funcf2 17140 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
123118feq2d 6502 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))))
124122, 123mpbid 234 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
125124ffnd 6517 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)))
126 eqfnov2 7283 . . . . . . . . 9 (((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)) ∧ (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔)))
127121, 125, 126syl2anc 586 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔)))
128114, 127mpbird 259 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
129128ralrimivva 3193 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
130129ralrimivva 3193 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
131 oveq2 7166 . . . . . . . . 9 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩))
132 oveq2 7166 . . . . . . . . 9 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢(2nd𝐹)𝑣) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩))
133131, 132eqeq12d 2839 . . . . . . . 8 (𝑣 = ⟨𝑧, 𝑤⟩ → ((𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩)))
134133ralxp 5714 . . . . . . 7 (∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩))
135 oveq1 7165 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩))
136 oveq1 7165 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
137135, 136eqeq12d 2839 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)))
1381372ralbidv 3201 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)))
139134, 138syl5bb 285 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)))
140139ralxp 5714 . . . . 5 (∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
141130, 140sylibr 236 . . . 4 (𝜑 → ∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣))
14226, 31funcfn2 17141 . . . . 5 (𝜑 → (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))))
14326, 35funcfn2 17141 . . . . 5 (𝜑 → (2nd𝐹) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))))
144 eqfnov2 7283 . . . . 5 (((2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))) ∧ (2nd𝐹) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))) → ((2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (2nd𝐹) ↔ ∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣)))
145142, 143, 144syl2anc 586 . . . 4 (𝜑 → ((2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (2nd𝐹) ↔ ∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣)))
146141, 145mpbird 259 . . 3 (𝜑 → (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (2nd𝐹))
14740, 146opeq12d 4813 . 2 (𝜑 → ⟨(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)), (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
148 1st2nd 7740 . . 3 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = ⟨(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)), (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟩)
14928, 29, 148sylancr 589 . 2 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = ⟨(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)), (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟩)
150 1st2nd 7740 . . 3 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
15128, 4, 150sylancr 589 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
152147, 149, 1513eqtr4d 2868 1 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  cop 4575   class class class wbr 5068   × cxp 5555  Rel wrel 5562   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  ⟨“cs3 14206  Basecbs 16485  Hom chom 16578  compcco 16579  Catccat 16937  Idccid 16938   Func cfunc 17126   FuncCat cfuc 17214   ×c cxpc 17420   curryF ccurf 17462   uncurryF cuncf 17463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-hom 16591  df-cco 16592  df-cat 16941  df-cid 16942  df-func 17130  df-cofu 17132  df-nat 17215  df-fuc 17216  df-xpc 17424  df-1stf 17425  df-2ndf 17426  df-prf 17427  df-evlf 17465  df-curf 17466  df-uncf 17467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator