MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfcurf Structured version   Visualization version   GIF version

Theorem uncfcurf 18142
Description: Cancellation of uncurry with curry. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfcurf.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
uncfcurf.c (𝜑𝐶 ∈ Cat)
uncfcurf.d (𝜑𝐷 ∈ Cat)
uncfcurf.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
Assertion
Ref Expression
uncfcurf (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = 𝐹)

Proof of Theorem uncfcurf
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . . 7 (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 uncfcurf.d . . . . . . . 8 (𝜑𝐷 ∈ Cat)
32adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐷 ∈ Cat)
4 uncfcurf.f . . . . . . . . . 10 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
5 funcrcl 17767 . . . . . . . . . 10 (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
64, 5syl 17 . . . . . . . . 9 (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
76simprd 495 . . . . . . . 8 (𝜑𝐸 ∈ Cat)
87adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐸 ∈ Cat)
9 uncfcurf.g . . . . . . . . 9 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
10 eqid 2731 . . . . . . . . 9 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
11 uncfcurf.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
129, 10, 11, 2, 4curfcl 18135 . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
1312adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
14 eqid 2731 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
15 eqid 2731 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
16 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶))
17 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
181, 3, 8, 13, 14, 15, 16, 17uncf1 18139 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = ((1st ‘((1st𝐺)‘𝑥))‘𝑦))
1911adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐶 ∈ Cat)
204adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
21 eqid 2731 . . . . . . 7 ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑥)
229, 14, 19, 3, 20, 15, 16, 21, 17curf11 18129 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = (𝑥(1st𝐹)𝑦))
2318, 22eqtrd 2766 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦))
2423ralrimivva 3175 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦))
25 eqid 2731 . . . . . . . 8 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
2625, 14, 15xpcbas 18081 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
27 eqid 2731 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
28 relfunc 17766 . . . . . . . 8 Rel ((𝐶 ×c 𝐷) Func 𝐸)
291, 2, 7, 12uncfcl 18138 . . . . . . . 8 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) ∈ ((𝐶 ×c 𝐷) Func 𝐸))
30 1st2ndbr 7974 . . . . . . . 8 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)))
3128, 29, 30sylancr 587 . . . . . . 7 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)))
3226, 27, 31funcf1 17770 . . . . . 6 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐸))
3332ffnd 6652 . . . . 5 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn ((Base‘𝐶) × (Base‘𝐷)))
34 1st2ndbr 7974 . . . . . . . 8 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3528, 4, 34sylancr 587 . . . . . . 7 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3626, 27, 35funcf1 17770 . . . . . 6 (𝜑 → (1st𝐹):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐸))
3736ffnd 6652 . . . . 5 (𝜑 → (1st𝐹) Fn ((Base‘𝐶) × (Base‘𝐷)))
38 eqfnov2 7476 . . . . 5 (((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn ((Base‘𝐶) × (Base‘𝐷)) ∧ (1st𝐹) Fn ((Base‘𝐶) × (Base‘𝐷))) → ((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (1st𝐹) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦)))
3933, 37, 38syl2anc 584 . . . 4 (𝜑 → ((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (1st𝐹) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦)))
4024, 39mpbird 257 . . 3 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (1st𝐹))
412ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐷 ∈ Cat)
427ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐸 ∈ Cat)
4312ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
4416adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶))
4544adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑥 ∈ (Base‘𝐶))
4617adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
4746adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑦 ∈ (Base‘𝐷))
48 eqid 2731 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
49 eqid 2731 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
50 simprl 770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑧 ∈ (Base‘𝐶))
5150adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑧 ∈ (Base‘𝐶))
52 simprr 772 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑤 ∈ (Base‘𝐷))
5352adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑤 ∈ (Base‘𝐷))
54 simprl 770 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧))
55 simprr 772 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))
561, 41, 42, 43, 14, 15, 45, 47, 48, 49, 51, 53, 54, 55uncf2 18140 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = ((((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔)))
5711ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐶 ∈ Cat)
584ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
599, 14, 57, 41, 58, 15, 45, 21, 47curf11 18129 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = (𝑥(1st𝐹)𝑦))
60 df-ov 7349 . . . . . . . . . . . . . . 15 (𝑥(1st𝐹)𝑦) = ((1st𝐹)‘⟨𝑥, 𝑦⟩)
6159, 60eqtrdi 2782 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = ((1st𝐹)‘⟨𝑥, 𝑦⟩))
629, 14, 57, 41, 58, 15, 45, 21, 53curf11 18129 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = (𝑥(1st𝐹)𝑤))
63 df-ov 7349 . . . . . . . . . . . . . . 15 (𝑥(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩)
6462, 63eqtrdi 2782 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩))
6561, 64opeq12d 4833 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩ = ⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩)
66 eqid 2731 . . . . . . . . . . . . . . 15 ((1st𝐺)‘𝑧) = ((1st𝐺)‘𝑧)
679, 14, 57, 41, 58, 15, 51, 66, 53curf11 18129 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = (𝑧(1st𝐹)𝑤))
68 df-ov 7349 . . . . . . . . . . . . . 14 (𝑧(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩)
6967, 68eqtrdi 2782 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩))
7065, 69oveq12d 7364 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤)) = (⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
71 eqid 2731 . . . . . . . . . . . . . 14 (Id‘𝐷) = (Id‘𝐷)
72 eqid 2731 . . . . . . . . . . . . . 14 ((𝑥(2nd𝐺)𝑧)‘𝑓) = ((𝑥(2nd𝐺)𝑧)‘𝑓)
739, 14, 57, 41, 58, 15, 48, 71, 45, 51, 54, 72, 53curf2val 18133 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤) = (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)))
74 df-ov 7349 . . . . . . . . . . . . 13 (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)
7573, 74eqtrdi 2782 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩))
76 eqid 2731 . . . . . . . . . . . . . 14 (Id‘𝐶) = (Id‘𝐶)
779, 14, 57, 41, 58, 15, 45, 21, 47, 49, 76, 53, 55curf12 18130 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔) = (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)𝑔))
78 df-ov 7349 . . . . . . . . . . . . 13 (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)𝑔) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩)
7977, 78eqtrdi 2782 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩))
8070, 75, 79oveq123d 7367 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔)) = (((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩)))
81 eqid 2731 . . . . . . . . . . . 12 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
82 eqid 2731 . . . . . . . . . . . 12 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
83 eqid 2731 . . . . . . . . . . . 12 (comp‘𝐸) = (comp‘𝐸)
8435ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
8584adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
86 opelxpi 5653 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
8786ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
8887adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
8945, 53opelxpd 5655 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑥, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
90 opelxpi 5653 . . . . . . . . . . . . . 14 ((𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
9190adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
9291adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
9314, 48, 76, 57, 45catidcl 17585 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
9493, 55opelxpd 5655 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑥), 𝑔⟩ ∈ ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑤)))
9525, 14, 15, 48, 49, 45, 47, 45, 53, 81xpchom2 18089 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑤)))
9694, 95eleqtrrd 2834 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑥), 𝑔⟩ ∈ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑤⟩))
9715, 49, 71, 41, 53catidcl 17585 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((Id‘𝐷)‘𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤))
9854, 97opelxpd 5655 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
9925, 14, 15, 48, 49, 45, 53, 51, 53, 81xpchom2 18089 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
10098, 99eleqtrrd 2834 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩))
10126, 81, 82, 83, 85, 88, 89, 92, 96, 100funcco 17775 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = (((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩)))
102 eqid 2731 . . . . . . . . . . . . . . 15 (comp‘𝐶) = (comp‘𝐶)
103 eqid 2731 . . . . . . . . . . . . . . 15 (comp‘𝐷) = (comp‘𝐷)
10425, 14, 15, 48, 49, 45, 47, 45, 53, 102, 103, 82, 51, 53, 93, 55, 54, 97xpcco2 18090 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩) = ⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩)
105104fveq2d 6826 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩))
106 df-ov 7349 . . . . . . . . . . . . 13 ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩)
107105, 106eqtr4di 2784 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)))
10814, 48, 76, 57, 45, 102, 51, 54catrid 17587 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)) = 𝑓)
10915, 49, 71, 41, 47, 103, 53, 55catlid 17586 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔) = 𝑔)
110108, 109oveq12d 7364 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
111107, 110eqtrd 2766 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
11280, 101, 1113eqtr2d 2772 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔)) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
11356, 112eqtrd 2766 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
114113ralrimivva 3175 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
115 eqid 2731 . . . . . . . . . . . 12 (Hom ‘𝐸) = (Hom ‘𝐸)
11631ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)))
11726, 81, 115, 116, 87, 91funcf2 17772 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩)))
11825, 14, 15, 48, 49, 44, 46, 50, 52, 81xpchom2 18089 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)))
119118feq2d 6635 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩))))
120117, 119mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩)))
121120ffnd 6652 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)))
12226, 81, 115, 84, 87, 91funcf2 17772 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
123118feq2d 6635 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))))
124122, 123mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
125124ffnd 6652 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)))
126 eqfnov2 7476 . . . . . . . . 9 (((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)) ∧ (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔)))
127121, 125, 126syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔)))
128114, 127mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
129128ralrimivva 3175 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
130129ralrimivva 3175 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
131 oveq2 7354 . . . . . . . . 9 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩))
132 oveq2 7354 . . . . . . . . 9 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢(2nd𝐹)𝑣) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩))
133131, 132eqeq12d 2747 . . . . . . . 8 (𝑣 = ⟨𝑧, 𝑤⟩ → ((𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩)))
134133ralxp 5781 . . . . . . 7 (∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩))
135 oveq1 7353 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩))
136 oveq1 7353 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
137135, 136eqeq12d 2747 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)))
1381372ralbidv 3196 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)))
139134, 138bitrid 283 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)))
140139ralxp 5781 . . . . 5 (∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
141130, 140sylibr 234 . . . 4 (𝜑 → ∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣))
14226, 31funcfn2 17773 . . . . 5 (𝜑 → (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))))
14326, 35funcfn2 17773 . . . . 5 (𝜑 → (2nd𝐹) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))))
144 eqfnov2 7476 . . . . 5 (((2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))) ∧ (2nd𝐹) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))) → ((2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (2nd𝐹) ↔ ∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣)))
145142, 143, 144syl2anc 584 . . . 4 (𝜑 → ((2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (2nd𝐹) ↔ ∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣)))
146141, 145mpbird 257 . . 3 (𝜑 → (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (2nd𝐹))
14740, 146opeq12d 4833 . 2 (𝜑 → ⟨(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)), (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
148 1st2nd 7971 . . 3 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = ⟨(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)), (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟩)
14928, 29, 148sylancr 587 . 2 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = ⟨(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)), (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟩)
150 1st2nd 7971 . . 3 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
15128, 4, 150sylancr 587 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
152147, 149, 1513eqtr4d 2776 1 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  cop 4582   class class class wbr 5091   × cxp 5614  Rel wrel 5621   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  ⟨“cs3 14746  Basecbs 17117  Hom chom 17169  compcco 17170  Catccat 17567  Idccid 17568   Func cfunc 17758   FuncCat cfuc 17849   ×c cxpc 18071   curryF ccurf 18113   uncurryF cuncf 18114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-concat 14475  df-s1 14501  df-s2 14752  df-s3 14753  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-hom 17182  df-cco 17183  df-cat 17571  df-cid 17572  df-func 17762  df-cofu 17764  df-nat 17850  df-fuc 17851  df-xpc 18075  df-1stf 18076  df-2ndf 18077  df-prf 18078  df-evlf 18116  df-curf 18117  df-uncf 18118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator