MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfcurf Structured version   Visualization version   GIF version

Theorem uncfcurf 18284
Description: Cancellation of uncurry with curry. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfcurf.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
uncfcurf.c (𝜑𝐶 ∈ Cat)
uncfcurf.d (𝜑𝐷 ∈ Cat)
uncfcurf.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
Assertion
Ref Expression
uncfcurf (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = 𝐹)

Proof of Theorem uncfcurf
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . . . 7 (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 uncfcurf.d . . . . . . . 8 (𝜑𝐷 ∈ Cat)
32adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐷 ∈ Cat)
4 uncfcurf.f . . . . . . . . . 10 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
5 funcrcl 17908 . . . . . . . . . 10 (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
64, 5syl 17 . . . . . . . . 9 (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
76simprd 495 . . . . . . . 8 (𝜑𝐸 ∈ Cat)
87adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐸 ∈ Cat)
9 uncfcurf.g . . . . . . . . 9 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
10 eqid 2737 . . . . . . . . 9 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
11 uncfcurf.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
129, 10, 11, 2, 4curfcl 18277 . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
1312adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
14 eqid 2737 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
15 eqid 2737 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
16 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶))
17 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
181, 3, 8, 13, 14, 15, 16, 17uncf1 18281 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = ((1st ‘((1st𝐺)‘𝑥))‘𝑦))
1911adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐶 ∈ Cat)
204adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
21 eqid 2737 . . . . . . 7 ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑥)
229, 14, 19, 3, 20, 15, 16, 21, 17curf11 18271 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = (𝑥(1st𝐹)𝑦))
2318, 22eqtrd 2777 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦))
2423ralrimivva 3202 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦))
25 eqid 2737 . . . . . . . 8 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
2625, 14, 15xpcbas 18223 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
27 eqid 2737 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
28 relfunc 17907 . . . . . . . 8 Rel ((𝐶 ×c 𝐷) Func 𝐸)
291, 2, 7, 12uncfcl 18280 . . . . . . . 8 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) ∈ ((𝐶 ×c 𝐷) Func 𝐸))
30 1st2ndbr 8067 . . . . . . . 8 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)))
3128, 29, 30sylancr 587 . . . . . . 7 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)))
3226, 27, 31funcf1 17911 . . . . . 6 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐸))
3332ffnd 6737 . . . . 5 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn ((Base‘𝐶) × (Base‘𝐷)))
34 1st2ndbr 8067 . . . . . . . 8 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3528, 4, 34sylancr 587 . . . . . . 7 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3626, 27, 35funcf1 17911 . . . . . 6 (𝜑 → (1st𝐹):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐸))
3736ffnd 6737 . . . . 5 (𝜑 → (1st𝐹) Fn ((Base‘𝐶) × (Base‘𝐷)))
38 eqfnov2 7563 . . . . 5 (((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn ((Base‘𝐶) × (Base‘𝐷)) ∧ (1st𝐹) Fn ((Base‘𝐶) × (Base‘𝐷))) → ((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (1st𝐹) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦)))
3933, 37, 38syl2anc 584 . . . 4 (𝜑 → ((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (1st𝐹) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦)))
4024, 39mpbird 257 . . 3 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (1st𝐹))
412ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐷 ∈ Cat)
427ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐸 ∈ Cat)
4312ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
4416adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶))
4544adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑥 ∈ (Base‘𝐶))
4617adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
4746adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑦 ∈ (Base‘𝐷))
48 eqid 2737 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
49 eqid 2737 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
50 simprl 771 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑧 ∈ (Base‘𝐶))
5150adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑧 ∈ (Base‘𝐶))
52 simprr 773 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑤 ∈ (Base‘𝐷))
5352adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑤 ∈ (Base‘𝐷))
54 simprl 771 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧))
55 simprr 773 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))
561, 41, 42, 43, 14, 15, 45, 47, 48, 49, 51, 53, 54, 55uncf2 18282 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = ((((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔)))
5711ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐶 ∈ Cat)
584ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
599, 14, 57, 41, 58, 15, 45, 21, 47curf11 18271 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = (𝑥(1st𝐹)𝑦))
60 df-ov 7434 . . . . . . . . . . . . . . 15 (𝑥(1st𝐹)𝑦) = ((1st𝐹)‘⟨𝑥, 𝑦⟩)
6159, 60eqtrdi 2793 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = ((1st𝐹)‘⟨𝑥, 𝑦⟩))
629, 14, 57, 41, 58, 15, 45, 21, 53curf11 18271 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = (𝑥(1st𝐹)𝑤))
63 df-ov 7434 . . . . . . . . . . . . . . 15 (𝑥(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩)
6462, 63eqtrdi 2793 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩))
6561, 64opeq12d 4881 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩ = ⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩)
66 eqid 2737 . . . . . . . . . . . . . . 15 ((1st𝐺)‘𝑧) = ((1st𝐺)‘𝑧)
679, 14, 57, 41, 58, 15, 51, 66, 53curf11 18271 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = (𝑧(1st𝐹)𝑤))
68 df-ov 7434 . . . . . . . . . . . . . 14 (𝑧(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩)
6967, 68eqtrdi 2793 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩))
7065, 69oveq12d 7449 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤)) = (⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
71 eqid 2737 . . . . . . . . . . . . . 14 (Id‘𝐷) = (Id‘𝐷)
72 eqid 2737 . . . . . . . . . . . . . 14 ((𝑥(2nd𝐺)𝑧)‘𝑓) = ((𝑥(2nd𝐺)𝑧)‘𝑓)
739, 14, 57, 41, 58, 15, 48, 71, 45, 51, 54, 72, 53curf2val 18275 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤) = (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)))
74 df-ov 7434 . . . . . . . . . . . . 13 (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)
7573, 74eqtrdi 2793 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩))
76 eqid 2737 . . . . . . . . . . . . . 14 (Id‘𝐶) = (Id‘𝐶)
779, 14, 57, 41, 58, 15, 45, 21, 47, 49, 76, 53, 55curf12 18272 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔) = (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)𝑔))
78 df-ov 7434 . . . . . . . . . . . . 13 (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)𝑔) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩)
7977, 78eqtrdi 2793 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩))
8070, 75, 79oveq123d 7452 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔)) = (((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩)))
81 eqid 2737 . . . . . . . . . . . 12 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
82 eqid 2737 . . . . . . . . . . . 12 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
83 eqid 2737 . . . . . . . . . . . 12 (comp‘𝐸) = (comp‘𝐸)
8435ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
8584adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
86 opelxpi 5722 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
8786ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
8887adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
8945, 53opelxpd 5724 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑥, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
90 opelxpi 5722 . . . . . . . . . . . . . 14 ((𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
9190adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
9291adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
9314, 48, 76, 57, 45catidcl 17725 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
9493, 55opelxpd 5724 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑥), 𝑔⟩ ∈ ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑤)))
9525, 14, 15, 48, 49, 45, 47, 45, 53, 81xpchom2 18231 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑤)))
9694, 95eleqtrrd 2844 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑥), 𝑔⟩ ∈ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑤⟩))
9715, 49, 71, 41, 53catidcl 17725 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((Id‘𝐷)‘𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤))
9854, 97opelxpd 5724 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
9925, 14, 15, 48, 49, 45, 53, 51, 53, 81xpchom2 18231 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
10098, 99eleqtrrd 2844 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩))
10126, 81, 82, 83, 85, 88, 89, 92, 96, 100funcco 17916 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = (((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩)))
102 eqid 2737 . . . . . . . . . . . . . . 15 (comp‘𝐶) = (comp‘𝐶)
103 eqid 2737 . . . . . . . . . . . . . . 15 (comp‘𝐷) = (comp‘𝐷)
10425, 14, 15, 48, 49, 45, 47, 45, 53, 102, 103, 82, 51, 53, 93, 55, 54, 97xpcco2 18232 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩) = ⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩)
105104fveq2d 6910 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩))
106 df-ov 7434 . . . . . . . . . . . . 13 ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩)
107105, 106eqtr4di 2795 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)))
10814, 48, 76, 57, 45, 102, 51, 54catrid 17727 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)) = 𝑓)
10915, 49, 71, 41, 47, 103, 53, 55catlid 17726 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔) = 𝑔)
110108, 109oveq12d 7449 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
111107, 110eqtrd 2777 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
11280, 101, 1113eqtr2d 2783 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔)) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
11356, 112eqtrd 2777 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
114113ralrimivva 3202 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
115 eqid 2737 . . . . . . . . . . . 12 (Hom ‘𝐸) = (Hom ‘𝐸)
11631ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)))
11726, 81, 115, 116, 87, 91funcf2 17913 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩)))
11825, 14, 15, 48, 49, 44, 46, 50, 52, 81xpchom2 18231 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)))
119118feq2d 6722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩))))
120117, 119mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩)))
121120ffnd 6737 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)))
12226, 81, 115, 84, 87, 91funcf2 17913 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
123118feq2d 6722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))))
124122, 123mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
125124ffnd 6737 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)))
126 eqfnov2 7563 . . . . . . . . 9 (((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)) ∧ (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔)))
127121, 125, 126syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔)))
128114, 127mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
129128ralrimivva 3202 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
130129ralrimivva 3202 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
131 oveq2 7439 . . . . . . . . 9 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩))
132 oveq2 7439 . . . . . . . . 9 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢(2nd𝐹)𝑣) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩))
133131, 132eqeq12d 2753 . . . . . . . 8 (𝑣 = ⟨𝑧, 𝑤⟩ → ((𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩)))
134133ralxp 5852 . . . . . . 7 (∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩))
135 oveq1 7438 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩))
136 oveq1 7438 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
137135, 136eqeq12d 2753 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)))
1381372ralbidv 3221 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)))
139134, 138bitrid 283 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)))
140139ralxp 5852 . . . . 5 (∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
141130, 140sylibr 234 . . . 4 (𝜑 → ∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣))
14226, 31funcfn2 17914 . . . . 5 (𝜑 → (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))))
14326, 35funcfn2 17914 . . . . 5 (𝜑 → (2nd𝐹) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))))
144 eqfnov2 7563 . . . . 5 (((2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))) ∧ (2nd𝐹) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))) → ((2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (2nd𝐹) ↔ ∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣)))
145142, 143, 144syl2anc 584 . . . 4 (𝜑 → ((2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (2nd𝐹) ↔ ∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣)))
146141, 145mpbird 257 . . 3 (𝜑 → (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (2nd𝐹))
14740, 146opeq12d 4881 . 2 (𝜑 → ⟨(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)), (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
148 1st2nd 8064 . . 3 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = ⟨(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)), (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟩)
14928, 29, 148sylancr 587 . 2 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = ⟨(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)), (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟩)
150 1st2nd 8064 . . 3 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
15128, 4, 150sylancr 587 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
152147, 149, 1513eqtr4d 2787 1 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  cop 4632   class class class wbr 5143   × cxp 5683  Rel wrel 5690   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  ⟨“cs3 14881  Basecbs 17247  Hom chom 17308  compcco 17309  Catccat 17707  Idccid 17708   Func cfunc 17899   FuncCat cfuc 17990   ×c cxpc 18213   curryF ccurf 18255   uncurryF cuncf 18256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-hom 17321  df-cco 17322  df-cat 17711  df-cid 17712  df-func 17903  df-cofu 17905  df-nat 17991  df-fuc 17992  df-xpc 18217  df-1stf 18218  df-2ndf 18219  df-prf 18220  df-evlf 18258  df-curf 18259  df-uncf 18260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator