Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . . . . 7
⊢
(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺) = (⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺) |
2 | | uncfcurf.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ Cat) |
3 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐷 ∈ Cat) |
4 | | uncfcurf.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
5 | | funcrcl 17809 |
. . . . . . . . . 10
⊢ (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat)) |
6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat)) |
7 | 6 | simprd 496 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ Cat) |
8 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐸 ∈ Cat) |
9 | | uncfcurf.g |
. . . . . . . . 9
⊢ 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹) |
10 | | eqid 2732 |
. . . . . . . . 9
⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) |
11 | | uncfcurf.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ Cat) |
12 | 9, 10, 11, 2, 4 | curfcl 18181 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) |
13 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) |
14 | | eqid 2732 |
. . . . . . 7
⊢
(Base‘𝐶) =
(Base‘𝐶) |
15 | | eqid 2732 |
. . . . . . 7
⊢
(Base‘𝐷) =
(Base‘𝐷) |
16 | | simprl 769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶)) |
17 | | simprr 771 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷)) |
18 | 1, 3, 8, 13, 14, 15, 16, 17 | uncf1 18185 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))𝑦) = ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑦)) |
19 | 11 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐶 ∈ Cat) |
20 | 4 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
21 | | eqid 2732 |
. . . . . . 7
⊢
((1st ‘𝐺)‘𝑥) = ((1st ‘𝐺)‘𝑥) |
22 | 9, 14, 19, 3, 20, 15, 16, 21, 17 | curf11 18175 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → ((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦) = (𝑥(1st ‘𝐹)𝑦)) |
23 | 18, 22 | eqtrd 2772 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))𝑦) = (𝑥(1st ‘𝐹)𝑦)) |
24 | 23 | ralrimivva 3200 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))𝑦) = (𝑥(1st ‘𝐹)𝑦)) |
25 | | eqid 2732 |
. . . . . . . 8
⊢ (𝐶 ×c
𝐷) = (𝐶 ×c 𝐷) |
26 | 25, 14, 15 | xpcbas 18126 |
. . . . . . 7
⊢
((Base‘𝐶)
× (Base‘𝐷)) =
(Base‘(𝐶
×c 𝐷)) |
27 | | eqid 2732 |
. . . . . . 7
⊢
(Base‘𝐸) =
(Base‘𝐸) |
28 | | relfunc 17808 |
. . . . . . . 8
⊢ Rel
((𝐶
×c 𝐷) Func 𝐸) |
29 | 1, 2, 7, 12 | uncfcl 18184 |
. . . . . . . 8
⊢ (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺) ∈ ((𝐶 ×c
𝐷) Func 𝐸)) |
30 | | 1st2ndbr 8024 |
. . . . . . . 8
⊢ ((Rel
((𝐶
×c 𝐷) Func 𝐸) ∧ (⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺) ∈ ((𝐶 ×c
𝐷) Func 𝐸)) → (1st
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))) |
31 | 28, 29, 30 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (1st
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))) |
32 | 26, 27, 31 | funcf1 17812 |
. . . . . 6
⊢ (𝜑 → (1st
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺)):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐸)) |
33 | 32 | ffnd 6715 |
. . . . 5
⊢ (𝜑 → (1st
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺)) Fn ((Base‘𝐶) × (Base‘𝐷))) |
34 | | 1st2ndbr 8024 |
. . . . . . . 8
⊢ ((Rel
((𝐶
×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st ‘𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘𝐹)) |
35 | 28, 4, 34 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐹)((𝐶 ×c
𝐷) Func 𝐸)(2nd ‘𝐹)) |
36 | 26, 27, 35 | funcf1 17812 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐹):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐸)) |
37 | 36 | ffnd 6715 |
. . . . 5
⊢ (𝜑 → (1st
‘𝐹) Fn
((Base‘𝐶) ×
(Base‘𝐷))) |
38 | | eqfnov2 7535 |
. . . . 5
⊢
(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺)) Fn ((Base‘𝐶) × (Base‘𝐷)) ∧ (1st
‘𝐹) Fn
((Base‘𝐶) ×
(Base‘𝐷))) →
((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺)) = (1st
‘𝐹) ↔
∀𝑥 ∈
(Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))𝑦) = (𝑥(1st ‘𝐹)𝑦))) |
39 | 33, 37, 38 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((1st
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺)) = (1st
‘𝐹) ↔
∀𝑥 ∈
(Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))𝑦) = (𝑥(1st ‘𝐹)𝑦))) |
40 | 24, 39 | mpbird 256 |
. . 3
⊢ (𝜑 → (1st
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺)) = (1st
‘𝐹)) |
41 | 2 | ad3antrrr 728 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐷 ∈ Cat) |
42 | 7 | ad3antrrr 728 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐸 ∈ Cat) |
43 | 12 | ad3antrrr 728 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) |
44 | 16 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶)) |
45 | 44 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑥 ∈ (Base‘𝐶)) |
46 | 17 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷)) |
47 | 46 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑦 ∈ (Base‘𝐷)) |
48 | | eqid 2732 |
. . . . . . . . . . 11
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
49 | | eqid 2732 |
. . . . . . . . . . 11
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
50 | | simprl 769 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑧 ∈ (Base‘𝐶)) |
51 | 50 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑧 ∈ (Base‘𝐶)) |
52 | | simprr 771 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑤 ∈ (Base‘𝐷)) |
53 | 52 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑤 ∈ (Base‘𝐷)) |
54 | | simprl 769 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)) |
55 | | simprr 771 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)) |
56 | 1, 41, 42, 43, 14, 15, 45, 47, 48, 49, 51, 53, 54, 55 | uncf2 18186 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩)𝑔) = ((((𝑥(2nd ‘𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦), ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑤)‘𝑔))) |
57 | 11 | ad3antrrr 728 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐶 ∈ Cat) |
58 | 4 | ad3antrrr 728 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
59 | 9, 14, 57, 41, 58, 15, 45, 21, 47 | curf11 18175 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦) = (𝑥(1st ‘𝐹)𝑦)) |
60 | | df-ov 7408 |
. . . . . . . . . . . . . . 15
⊢ (𝑥(1st ‘𝐹)𝑦) = ((1st ‘𝐹)‘⟨𝑥, 𝑦⟩) |
61 | 59, 60 | eqtrdi 2788 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦) = ((1st ‘𝐹)‘⟨𝑥, 𝑦⟩)) |
62 | 9, 14, 57, 41, 58, 15, 45, 21, 53 | curf11 18175 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st
‘((1st ‘𝐺)‘𝑥))‘𝑤) = (𝑥(1st ‘𝐹)𝑤)) |
63 | | df-ov 7408 |
. . . . . . . . . . . . . . 15
⊢ (𝑥(1st ‘𝐹)𝑤) = ((1st ‘𝐹)‘⟨𝑥, 𝑤⟩) |
64 | 62, 63 | eqtrdi 2788 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st
‘((1st ‘𝐺)‘𝑥))‘𝑤) = ((1st ‘𝐹)‘⟨𝑥, 𝑤⟩)) |
65 | 61, 64 | opeq12d 4880 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦), ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑤)⟩ = ⟨((1st ‘𝐹)‘⟨𝑥, 𝑦⟩), ((1st ‘𝐹)‘⟨𝑥, 𝑤⟩)⟩) |
66 | | eqid 2732 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝐺)‘𝑧) = ((1st ‘𝐺)‘𝑧) |
67 | 9, 14, 57, 41, 58, 15, 51, 66, 53 | curf11 18175 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st
‘((1st ‘𝐺)‘𝑧))‘𝑤) = (𝑧(1st ‘𝐹)𝑤)) |
68 | | df-ov 7408 |
. . . . . . . . . . . . . 14
⊢ (𝑧(1st ‘𝐹)𝑤) = ((1st ‘𝐹)‘⟨𝑧, 𝑤⟩) |
69 | 67, 68 | eqtrdi 2788 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st
‘((1st ‘𝐺)‘𝑧))‘𝑤) = ((1st ‘𝐹)‘⟨𝑧, 𝑤⟩)) |
70 | 65, 69 | oveq12d 7423 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦), ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑧))‘𝑤)) = (⟨((1st ‘𝐹)‘⟨𝑥, 𝑦⟩), ((1st ‘𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st ‘𝐹)‘⟨𝑧, 𝑤⟩))) |
71 | | eqid 2732 |
. . . . . . . . . . . . . 14
⊢
(Id‘𝐷) =
(Id‘𝐷) |
72 | | eqid 2732 |
. . . . . . . . . . . . . 14
⊢ ((𝑥(2nd ‘𝐺)𝑧)‘𝑓) = ((𝑥(2nd ‘𝐺)𝑧)‘𝑓) |
73 | 9, 14, 57, 41, 58, 15, 48, 71, 45, 51, 54, 72, 53 | curf2val 18179 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((𝑥(2nd ‘𝐺)𝑧)‘𝑓)‘𝑤) = (𝑓(⟨𝑥, 𝑤⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤))) |
74 | | df-ov 7408 |
. . . . . . . . . . . . 13
⊢ (𝑓(⟨𝑥, 𝑤⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑥, 𝑤⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩) |
75 | 73, 74 | eqtrdi 2788 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((𝑥(2nd ‘𝐺)𝑧)‘𝑓)‘𝑤) = ((⟨𝑥, 𝑤⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)) |
76 | | eqid 2732 |
. . . . . . . . . . . . . 14
⊢
(Id‘𝐶) =
(Id‘𝐶) |
77 | 9, 14, 57, 41, 58, 15, 45, 21, 47, 49, 76, 53, 55 | curf12 18176 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑤)‘𝑔) = (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑥, 𝑤⟩)𝑔)) |
78 | | df-ov 7408 |
. . . . . . . . . . . . 13
⊢
(((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑥, 𝑤⟩)𝑔) = ((⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩) |
79 | 77, 78 | eqtrdi 2788 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑤)‘𝑔) = ((⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) |
80 | 70, 75, 79 | oveq123d 7426 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((((𝑥(2nd ‘𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦), ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑤)‘𝑔)) = (((⟨𝑥, 𝑤⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st ‘𝐹)‘⟨𝑥, 𝑦⟩), ((1st ‘𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st ‘𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩))) |
81 | | eqid 2732 |
. . . . . . . . . . . 12
⊢ (Hom
‘(𝐶
×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) |
82 | | eqid 2732 |
. . . . . . . . . . . 12
⊢
(comp‘(𝐶
×c 𝐷)) = (comp‘(𝐶 ×c 𝐷)) |
83 | | eqid 2732 |
. . . . . . . . . . . 12
⊢
(comp‘𝐸) =
(comp‘𝐸) |
84 | 35 | ad2antrr 724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (1st ‘𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘𝐹)) |
85 | 84 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (1st ‘𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘𝐹)) |
86 | | opelxpi 5712 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷))) |
87 | 86 | ad2antlr 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷))) |
88 | 87 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷))) |
89 | 45, 53 | opelxpd 5713 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑥, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷))) |
90 | | opelxpi 5712 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷))) |
91 | 90 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷))) |
92 | 91 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷))) |
93 | 14, 48, 76, 57, 45 | catidcl 17622 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
94 | 93, 55 | opelxpd 5713 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑥), 𝑔⟩ ∈ ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑤))) |
95 | 25, 14, 15, 48, 49, 45, 47, 45, 53, 81 | xpchom2 18134 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑤))) |
96 | 94, 95 | eleqtrrd 2836 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑥), 𝑔⟩ ∈ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑤⟩)) |
97 | 15, 49, 71, 41, 53 | catidcl 17622 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((Id‘𝐷)‘𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤)) |
98 | 54, 97 | opelxpd 5713 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤))) |
99 | 25, 14, 15, 48, 49, 45, 53, 51, 53, 81 | xpchom2 18134 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤))) |
100 | 98, 99 | eleqtrrd 2836 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)) |
101 | 26, 81, 82, 83, 85, 88, 89, 92, 96, 100 | funcco 17817 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = (((⟨𝑥, 𝑤⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st ‘𝐹)‘⟨𝑥, 𝑦⟩), ((1st ‘𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st ‘𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩))) |
102 | | eqid 2732 |
. . . . . . . . . . . . . . 15
⊢
(comp‘𝐶) =
(comp‘𝐶) |
103 | | eqid 2732 |
. . . . . . . . . . . . . . 15
⊢
(comp‘𝐷) =
(comp‘𝐷) |
104 | 25, 14, 15, 48, 49, 45, 47, 45, 53, 102, 103, 82, 51, 53, 93, 55, 54, 97 | xpcco2 18135 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩) = ⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩) |
105 | 104 | fveq2d 6892 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = ((⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩)) |
106 | | df-ov 7408 |
. . . . . . . . . . . . 13
⊢ ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)) = ((⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩) |
107 | 105, 106 | eqtr4di 2790 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔))) |
108 | 14, 48, 76, 57, 45, 102, 51, 54 | catrid 17624 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)) = 𝑓) |
109 | 15, 49, 71, 41, 47, 103, 53, 55 | catlid 17623 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔) = 𝑔) |
110 | 108, 109 | oveq12d 7423 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)) = (𝑓(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)𝑔)) |
111 | 107, 110 | eqtrd 2772 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = (𝑓(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)𝑔)) |
112 | 80, 101, 111 | 3eqtr2d 2778 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((((𝑥(2nd ‘𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦), ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑤)‘𝑔)) = (𝑓(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)𝑔)) |
113 | 56, 112 | eqtrd 2772 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)𝑔)) |
114 | 113 | ralrimivva 3200 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)𝑔)) |
115 | | eqid 2732 |
. . . . . . . . . . . 12
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
116 | 31 | ad2antrr 724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (1st
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))) |
117 | 26, 81, 115, 116, 87, 91 | funcf2 17814 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))‘⟨𝑧, 𝑤⟩))) |
118 | 25, 14, 15, 48, 49, 44, 46, 50, 52, 81 | xpchom2 18134 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))) |
119 | 118 | feq2d 6700 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))‘⟨𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))‘⟨𝑧, 𝑤⟩)))) |
120 | 117, 119 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))‘⟨𝑧, 𝑤⟩))) |
121 | 120 | ffnd 6715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))) |
122 | 26, 81, 115, 84, 87, 91 | funcf2 17814 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st ‘𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘𝐹)‘⟨𝑧, 𝑤⟩))) |
123 | 118 | feq2d 6700 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st ‘𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘𝐹)‘⟨𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st ‘𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘𝐹)‘⟨𝑧, 𝑤⟩)))) |
124 | 122, 123 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st ‘𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘𝐹)‘⟨𝑧, 𝑤⟩))) |
125 | 124 | ffnd 6715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))) |
126 | | eqfnov2 7535 |
. . . . . . . . 9
⊢
(((⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)) ∧ (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)𝑔))) |
127 | 121, 125,
126 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)𝑔))) |
128 | 114, 127 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)) |
129 | 128 | ralrimivva 3200 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)) |
130 | 129 | ralrimivva 3200 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)) |
131 | | oveq2 7413 |
. . . . . . . . 9
⊢ (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))𝑣) = (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩)) |
132 | | oveq2 7413 |
. . . . . . . . 9
⊢ (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢(2nd ‘𝐹)𝑣) = (𝑢(2nd ‘𝐹)⟨𝑧, 𝑤⟩)) |
133 | 131, 132 | eqeq12d 2748 |
. . . . . . . 8
⊢ (𝑣 = ⟨𝑧, 𝑤⟩ → ((𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))𝑣) = (𝑢(2nd ‘𝐹)𝑣) ↔ (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd ‘𝐹)⟨𝑧, 𝑤⟩))) |
134 | 133 | ralxp 5839 |
. . . . . . 7
⊢
(∀𝑣 ∈
((Base‘𝐶) ×
(Base‘𝐷))(𝑢(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))𝑣) = (𝑢(2nd ‘𝐹)𝑣) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd ‘𝐹)⟨𝑧, 𝑤⟩)) |
135 | | oveq1 7412 |
. . . . . . . . 9
⊢ (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩)) |
136 | | oveq1 7412 |
. . . . . . . . 9
⊢ (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢(2nd ‘𝐹)⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)) |
137 | 135, 136 | eqeq12d 2748 |
. . . . . . . 8
⊢ (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd ‘𝐹)⟨𝑧, 𝑤⟩) ↔ (⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩))) |
138 | 137 | 2ralbidv 3218 |
. . . . . . 7
⊢ (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd ‘𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩))) |
139 | 134, 138 | bitrid 282 |
. . . . . 6
⊢ (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))𝑣) = (𝑢(2nd ‘𝐹)𝑣) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩))) |
140 | 139 | ralxp 5839 |
. . . . 5
⊢
(∀𝑢 ∈
((Base‘𝐶) ×
(Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))𝑣) = (𝑢(2nd ‘𝐹)𝑣) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd ‘𝐹)⟨𝑧, 𝑤⟩)) |
141 | 130, 140 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))𝑣) = (𝑢(2nd ‘𝐹)𝑣)) |
142 | 26, 31 | funcfn2 17815 |
. . . . 5
⊢ (𝜑 → (2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺)) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))) |
143 | 26, 35 | funcfn2 17815 |
. . . . 5
⊢ (𝜑 → (2nd
‘𝐹) Fn
(((Base‘𝐶) ×
(Base‘𝐷)) ×
((Base‘𝐶) ×
(Base‘𝐷)))) |
144 | | eqfnov2 7535 |
. . . . 5
⊢
(((2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺)) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))) ∧ (2nd
‘𝐹) Fn
(((Base‘𝐶) ×
(Base‘𝐷)) ×
((Base‘𝐶) ×
(Base‘𝐷)))) →
((2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺)) = (2nd
‘𝐹) ↔
∀𝑢 ∈
((Base‘𝐶) ×
(Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))𝑣) = (𝑢(2nd ‘𝐹)𝑣))) |
145 | 142, 143,
144 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺)) = (2nd
‘𝐹) ↔
∀𝑢 ∈
((Base‘𝐶) ×
(Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))𝑣) = (𝑢(2nd ‘𝐹)𝑣))) |
146 | 141, 145 | mpbird 256 |
. . 3
⊢ (𝜑 → (2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺)) = (2nd
‘𝐹)) |
147 | 40, 146 | opeq12d 4880 |
. 2
⊢ (𝜑 → ⟨(1st
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺)), (2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟩ =
⟨(1st ‘𝐹), (2nd ‘𝐹)⟩) |
148 | | 1st2nd 8021 |
. . 3
⊢ ((Rel
((𝐶
×c 𝐷) Func 𝐸) ∧ (⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺) ∈ ((𝐶 ×c
𝐷) Func 𝐸)) → (⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺) = ⟨(1st
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺)), (2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟩) |
149 | 28, 29, 148 | sylancr 587 |
. 2
⊢ (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺) = ⟨(1st
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺)), (2nd
‘(⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺))⟩) |
150 | | 1st2nd 8021 |
. . 3
⊢ ((Rel
((𝐶
×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → 𝐹 = ⟨(1st ‘𝐹), (2nd ‘𝐹)⟩) |
151 | 28, 4, 150 | sylancr 587 |
. 2
⊢ (𝜑 → 𝐹 = ⟨(1st ‘𝐹), (2nd ‘𝐹)⟩) |
152 | 147, 149,
151 | 3eqtr4d 2782 |
1
⊢ (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF
𝐺) = 𝐹) |