MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfcurf Structured version   Visualization version   GIF version

Theorem uncfcurf 18204
Description: Cancellation of uncurry with curry. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfcurf.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
uncfcurf.c (𝜑𝐶 ∈ Cat)
uncfcurf.d (𝜑𝐷 ∈ Cat)
uncfcurf.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
Assertion
Ref Expression
uncfcurf (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = 𝐹)

Proof of Theorem uncfcurf
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . . . . 7 (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 uncfcurf.d . . . . . . . 8 (𝜑𝐷 ∈ Cat)
32adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐷 ∈ Cat)
4 uncfcurf.f . . . . . . . . . 10 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
5 funcrcl 17822 . . . . . . . . . 10 (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
64, 5syl 17 . . . . . . . . 9 (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
76simprd 495 . . . . . . . 8 (𝜑𝐸 ∈ Cat)
87adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐸 ∈ Cat)
9 uncfcurf.g . . . . . . . . 9 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
10 eqid 2726 . . . . . . . . 9 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
11 uncfcurf.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
129, 10, 11, 2, 4curfcl 18197 . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
1312adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
14 eqid 2726 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
15 eqid 2726 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
16 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶))
17 simprr 770 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
181, 3, 8, 13, 14, 15, 16, 17uncf1 18201 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = ((1st ‘((1st𝐺)‘𝑥))‘𝑦))
1911adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐶 ∈ Cat)
204adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
21 eqid 2726 . . . . . . 7 ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑥)
229, 14, 19, 3, 20, 15, 16, 21, 17curf11 18191 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = (𝑥(1st𝐹)𝑦))
2318, 22eqtrd 2766 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦))
2423ralrimivva 3194 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦))
25 eqid 2726 . . . . . . . 8 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
2625, 14, 15xpcbas 18142 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
27 eqid 2726 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
28 relfunc 17821 . . . . . . . 8 Rel ((𝐶 ×c 𝐷) Func 𝐸)
291, 2, 7, 12uncfcl 18200 . . . . . . . 8 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) ∈ ((𝐶 ×c 𝐷) Func 𝐸))
30 1st2ndbr 8027 . . . . . . . 8 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)))
3128, 29, 30sylancr 586 . . . . . . 7 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)))
3226, 27, 31funcf1 17825 . . . . . 6 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐸))
3332ffnd 6712 . . . . 5 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn ((Base‘𝐶) × (Base‘𝐷)))
34 1st2ndbr 8027 . . . . . . . 8 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3528, 4, 34sylancr 586 . . . . . . 7 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3626, 27, 35funcf1 17825 . . . . . 6 (𝜑 → (1st𝐹):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐸))
3736ffnd 6712 . . . . 5 (𝜑 → (1st𝐹) Fn ((Base‘𝐶) × (Base‘𝐷)))
38 eqfnov2 7535 . . . . 5 (((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn ((Base‘𝐶) × (Base‘𝐷)) ∧ (1st𝐹) Fn ((Base‘𝐶) × (Base‘𝐷))) → ((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (1st𝐹) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦)))
3933, 37, 38syl2anc 583 . . . 4 (𝜑 → ((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (1st𝐹) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)(𝑥(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑦) = (𝑥(1st𝐹)𝑦)))
4024, 39mpbird 257 . . 3 (𝜑 → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (1st𝐹))
412ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐷 ∈ Cat)
427ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐸 ∈ Cat)
4312ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
4416adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶))
4544adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑥 ∈ (Base‘𝐶))
4617adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
4746adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑦 ∈ (Base‘𝐷))
48 eqid 2726 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
49 eqid 2726 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
50 simprl 768 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑧 ∈ (Base‘𝐶))
5150adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑧 ∈ (Base‘𝐶))
52 simprr 770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → 𝑤 ∈ (Base‘𝐷))
5352adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑤 ∈ (Base‘𝐷))
54 simprl 768 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧))
55 simprr 770 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))
561, 41, 42, 43, 14, 15, 45, 47, 48, 49, 51, 53, 54, 55uncf2 18202 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = ((((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔)))
5711ad3antrrr 727 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐶 ∈ Cat)
584ad3antrrr 727 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
599, 14, 57, 41, 58, 15, 45, 21, 47curf11 18191 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = (𝑥(1st𝐹)𝑦))
60 df-ov 7408 . . . . . . . . . . . . . . 15 (𝑥(1st𝐹)𝑦) = ((1st𝐹)‘⟨𝑥, 𝑦⟩)
6159, 60eqtrdi 2782 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = ((1st𝐹)‘⟨𝑥, 𝑦⟩))
629, 14, 57, 41, 58, 15, 45, 21, 53curf11 18191 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = (𝑥(1st𝐹)𝑤))
63 df-ov 7408 . . . . . . . . . . . . . . 15 (𝑥(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩)
6462, 63eqtrdi 2782 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩))
6561, 64opeq12d 4876 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩ = ⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩)
66 eqid 2726 . . . . . . . . . . . . . . 15 ((1st𝐺)‘𝑧) = ((1st𝐺)‘𝑧)
679, 14, 57, 41, 58, 15, 51, 66, 53curf11 18191 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = (𝑧(1st𝐹)𝑤))
68 df-ov 7408 . . . . . . . . . . . . . 14 (𝑧(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩)
6967, 68eqtrdi 2782 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩))
7065, 69oveq12d 7423 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤)) = (⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
71 eqid 2726 . . . . . . . . . . . . . 14 (Id‘𝐷) = (Id‘𝐷)
72 eqid 2726 . . . . . . . . . . . . . 14 ((𝑥(2nd𝐺)𝑧)‘𝑓) = ((𝑥(2nd𝐺)𝑧)‘𝑓)
739, 14, 57, 41, 58, 15, 48, 71, 45, 51, 54, 72, 53curf2val 18195 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤) = (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)))
74 df-ov 7408 . . . . . . . . . . . . 13 (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)
7573, 74eqtrdi 2782 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩))
76 eqid 2726 . . . . . . . . . . . . . 14 (Id‘𝐶) = (Id‘𝐶)
779, 14, 57, 41, 58, 15, 45, 21, 47, 49, 76, 53, 55curf12 18192 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔) = (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)𝑔))
78 df-ov 7408 . . . . . . . . . . . . 13 (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)𝑔) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩)
7977, 78eqtrdi 2782 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩))
8070, 75, 79oveq123d 7426 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔)) = (((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩)))
81 eqid 2726 . . . . . . . . . . . 12 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
82 eqid 2726 . . . . . . . . . . . 12 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
83 eqid 2726 . . . . . . . . . . . 12 (comp‘𝐸) = (comp‘𝐸)
8435ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
8584adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
86 opelxpi 5706 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
8786ad2antlr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
8887adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
8945, 53opelxpd 5708 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑥, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
90 opelxpi 5706 . . . . . . . . . . . . . 14 ((𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
9190adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
9291adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
9314, 48, 76, 57, 45catidcl 17635 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
9493, 55opelxpd 5708 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑥), 𝑔⟩ ∈ ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑤)))
9525, 14, 15, 48, 49, 45, 47, 45, 53, 81xpchom2 18150 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑤)))
9694, 95eleqtrrd 2830 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑥), 𝑔⟩ ∈ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑤⟩))
9715, 49, 71, 41, 53catidcl 17635 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((Id‘𝐷)‘𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤))
9854, 97opelxpd 5708 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
9925, 14, 15, 48, 49, 45, 53, 51, 53, 81xpchom2 18150 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
10098, 99eleqtrrd 2830 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩))
10126, 81, 82, 83, 85, 88, 89, 92, 96, 100funcco 17830 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = (((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑦⟩), ((1st𝐹)‘⟨𝑥, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑔⟩)))
102 eqid 2726 . . . . . . . . . . . . . . 15 (comp‘𝐶) = (comp‘𝐶)
103 eqid 2726 . . . . . . . . . . . . . . 15 (comp‘𝐷) = (comp‘𝐷)
10425, 14, 15, 48, 49, 45, 47, 45, 53, 102, 103, 82, 51, 53, 93, 55, 54, 97xpcco2 18151 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩) = ⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩)
105104fveq2d 6889 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩))
106 df-ov 7408 . . . . . . . . . . . . 13 ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)), (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)⟩)
107105, 106eqtr4di 2784 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)))
10814, 48, 76, 57, 45, 102, 51, 54catrid 17637 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥)) = 𝑓)
10915, 49, 71, 41, 47, 103, 53, 55catlid 17636 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔) = 𝑔)
110108, 109oveq12d 7423 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑧)((Id‘𝐶)‘𝑥))(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)(((Id‘𝐷)‘𝑤)(⟨𝑦, 𝑤⟩(comp‘𝐷)𝑤)𝑔)) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
111107, 110eqtrd 2766 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑓, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑦⟩, ⟨𝑥, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨((Id‘𝐶)‘𝑥), 𝑔⟩)) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
11280, 101, 1113eqtr2d 2772 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → ((((𝑥(2nd𝐺)𝑧)‘𝑓)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑤)‘𝑔)) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
11356, 112eqtrd 2766 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
114113ralrimivva 3194 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔))
115 eqid 2726 . . . . . . . . . . . 12 (Hom ‘𝐸) = (Hom ‘𝐸)
11631ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)))
11726, 81, 115, 116, 87, 91funcf2 17827 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩)))
11825, 14, 15, 48, 49, 44, 46, 50, 52, 81xpchom2 18150 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)))
119118feq2d 6697 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩))))
120117, 119mpbid 231 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))‘⟨𝑧, 𝑤⟩)))
121120ffnd 6712 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)))
12226, 81, 115, 84, 87, 91funcf2 17827 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
123118feq2d 6697 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):(⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))))
124122, 123mpbid 231 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩):((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))⟶(((1st𝐹)‘⟨𝑥, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
125124ffnd 6712 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)))
126 eqfnov2 7535 . . . . . . . . 9 (((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤)) ∧ (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) Fn ((𝑥(Hom ‘𝐶)𝑧) × (𝑦(Hom ‘𝐷)𝑤))) → ((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔)))
127121, 125, 126syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → ((⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑧)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑤)(𝑓(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩)𝑔) = (𝑓(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)𝑔)))
128114, 127mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷))) → (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
129128ralrimivva 3194 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷))) → ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
130129ralrimivva 3194 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
131 oveq2 7413 . . . . . . . . 9 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩))
132 oveq2 7413 . . . . . . . . 9 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢(2nd𝐹)𝑣) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩))
133131, 132eqeq12d 2742 . . . . . . . 8 (𝑣 = ⟨𝑧, 𝑤⟩ → ((𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩)))
134133ralxp 5835 . . . . . . 7 (∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩))
135 oveq1 7412 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩))
136 oveq1 7412 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
137135, 136eqeq12d 2742 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ (⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)))
1381372ralbidv 3212 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (𝑢(2nd𝐹)⟨𝑧, 𝑤⟩) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)))
139134, 138bitrid 283 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩)))
140139ralxp 5835 . . . . 5 (∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐷)(⟨𝑥, 𝑦⟩(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑧, 𝑤⟩))
141130, 140sylibr 233 . . . 4 (𝜑 → ∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣))
14226, 31funcfn2 17828 . . . . 5 (𝜑 → (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))))
14326, 35funcfn2 17828 . . . . 5 (𝜑 → (2nd𝐹) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))))
144 eqfnov2 7535 . . . . 5 (((2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))) ∧ (2nd𝐹) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))) → ((2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (2nd𝐹) ↔ ∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣)))
145142, 143, 144syl2anc 583 . . . 4 (𝜑 → ((2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (2nd𝐹) ↔ ∀𝑢 ∈ ((Base‘𝐶) × (Base‘𝐷))∀𝑣 ∈ ((Base‘𝐶) × (Base‘𝐷))(𝑢(2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))𝑣) = (𝑢(2nd𝐹)𝑣)))
146141, 145mpbird 257 . . 3 (𝜑 → (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)) = (2nd𝐹))
14740, 146opeq12d 4876 . 2 (𝜑 → ⟨(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)), (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
148 1st2nd 8024 . . 3 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = ⟨(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)), (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟩)
14928, 29, 148sylancr 586 . 2 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = ⟨(1st ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)), (2nd ‘(⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺))⟩)
150 1st2nd 8024 . . 3 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
15128, 4, 150sylancr 586 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
152147, 149, 1513eqtr4d 2776 1 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3055  cop 4629   class class class wbr 5141   × cxp 5667  Rel wrel 5674   Fn wfn 6532  wf 6533  cfv 6537  (class class class)co 7405  1st c1st 7972  2nd c2nd 7973  ⟨“cs3 14799  Basecbs 17153  Hom chom 17217  compcco 17218  Catccat 17617  Idccid 17618   Func cfunc 17813   FuncCat cfuc 17905   ×c cxpc 18132   curryF ccurf 18175   uncurryF cuncf 18176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13491  df-fzo 13634  df-hash 14296  df-word 14471  df-concat 14527  df-s1 14552  df-s2 14805  df-s3 14806  df-struct 17089  df-slot 17124  df-ndx 17136  df-base 17154  df-hom 17230  df-cco 17231  df-cat 17621  df-cid 17622  df-func 17817  df-cofu 17819  df-nat 17906  df-fuc 17907  df-xpc 18136  df-1stf 18137  df-2ndf 18138  df-prf 18139  df-evlf 18178  df-curf 18179  df-uncf 18180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator