MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  updjudhcoinrg Structured version   Visualization version   GIF version

Theorem updjudhcoinrg 9364
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (𝜑𝐹:𝐴𝐶)
updjud.g (𝜑𝐺:𝐵𝐶)
updjudhf.h 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
Assertion
Ref Expression
updjudhcoinrg (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem updjudhcoinrg
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 updjud.f . . . . 5 (𝜑𝐹:𝐴𝐶)
2 updjud.g . . . . 5 (𝜑𝐺:𝐵𝐶)
3 updjudhf.h . . . . 5 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
41, 2, 3updjudhf 9362 . . . 4 (𝜑𝐻:(𝐴𝐵)⟶𝐶)
54ffnd 6517 . . 3 (𝜑𝐻 Fn (𝐴𝐵))
6 inrresf 9347 . . . 4 (inr ↾ 𝐵):𝐵⟶(𝐴𝐵)
7 ffn 6516 . . . 4 ((inr ↾ 𝐵):𝐵⟶(𝐴𝐵) → (inr ↾ 𝐵) Fn 𝐵)
86, 7mp1i 13 . . 3 (𝜑 → (inr ↾ 𝐵) Fn 𝐵)
9 frn 6522 . . . 4 ((inr ↾ 𝐵):𝐵⟶(𝐴𝐵) → ran (inr ↾ 𝐵) ⊆ (𝐴𝐵))
106, 9mp1i 13 . . 3 (𝜑 → ran (inr ↾ 𝐵) ⊆ (𝐴𝐵))
11 fnco 6467 . . 3 ((𝐻 Fn (𝐴𝐵) ∧ (inr ↾ 𝐵) Fn 𝐵 ∧ ran (inr ↾ 𝐵) ⊆ (𝐴𝐵)) → (𝐻 ∘ (inr ↾ 𝐵)) Fn 𝐵)
125, 8, 10, 11syl3anc 1367 . 2 (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) Fn 𝐵)
132ffnd 6517 . 2 (𝜑𝐺 Fn 𝐵)
14 fvco2 6760 . . . 4 (((inr ↾ 𝐵) Fn 𝐵𝑏𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐻‘((inr ↾ 𝐵)‘𝑏)))
158, 14sylan 582 . . 3 ((𝜑𝑏𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐻‘((inr ↾ 𝐵)‘𝑏)))
16 fvres 6691 . . . . . 6 (𝑏𝐵 → ((inr ↾ 𝐵)‘𝑏) = (inr‘𝑏))
1716adantl 484 . . . . 5 ((𝜑𝑏𝐵) → ((inr ↾ 𝐵)‘𝑏) = (inr‘𝑏))
1817fveq2d 6676 . . . 4 ((𝜑𝑏𝐵) → (𝐻‘((inr ↾ 𝐵)‘𝑏)) = (𝐻‘(inr‘𝑏)))
19 fveqeq2 6681 . . . . . . . 8 (𝑥 = (inr‘𝑏) → ((1st𝑥) = ∅ ↔ (1st ‘(inr‘𝑏)) = ∅))
20 2fveq3 6677 . . . . . . . 8 (𝑥 = (inr‘𝑏) → (𝐹‘(2nd𝑥)) = (𝐹‘(2nd ‘(inr‘𝑏))))
21 2fveq3 6677 . . . . . . . 8 (𝑥 = (inr‘𝑏) → (𝐺‘(2nd𝑥)) = (𝐺‘(2nd ‘(inr‘𝑏))))
2219, 20, 21ifbieq12d 4496 . . . . . . 7 (𝑥 = (inr‘𝑏) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inr‘𝑏)) = ∅, (𝐹‘(2nd ‘(inr‘𝑏))), (𝐺‘(2nd ‘(inr‘𝑏)))))
2322adantl 484 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inr‘𝑏)) = ∅, (𝐹‘(2nd ‘(inr‘𝑏))), (𝐺‘(2nd ‘(inr‘𝑏)))))
24 1stinr 9360 . . . . . . . . . 10 (𝑏𝐵 → (1st ‘(inr‘𝑏)) = 1o)
25 1n0 8121 . . . . . . . . . . . 12 1o ≠ ∅
2625neii 3020 . . . . . . . . . . 11 ¬ 1o = ∅
27 eqeq1 2827 . . . . . . . . . . 11 ((1st ‘(inr‘𝑏)) = 1o → ((1st ‘(inr‘𝑏)) = ∅ ↔ 1o = ∅))
2826, 27mtbiri 329 . . . . . . . . . 10 ((1st ‘(inr‘𝑏)) = 1o → ¬ (1st ‘(inr‘𝑏)) = ∅)
2924, 28syl 17 . . . . . . . . 9 (𝑏𝐵 → ¬ (1st ‘(inr‘𝑏)) = ∅)
3029adantl 484 . . . . . . . 8 ((𝜑𝑏𝐵) → ¬ (1st ‘(inr‘𝑏)) = ∅)
3130adantr 483 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → ¬ (1st ‘(inr‘𝑏)) = ∅)
3231iffalsed 4480 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st ‘(inr‘𝑏)) = ∅, (𝐹‘(2nd ‘(inr‘𝑏))), (𝐺‘(2nd ‘(inr‘𝑏)))) = (𝐺‘(2nd ‘(inr‘𝑏))))
3323, 32eqtrd 2858 . . . . 5 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = (𝐺‘(2nd ‘(inr‘𝑏))))
34 djurcl 9342 . . . . . 6 (𝑏𝐵 → (inr‘𝑏) ∈ (𝐴𝐵))
3534adantl 484 . . . . 5 ((𝜑𝑏𝐵) → (inr‘𝑏) ∈ (𝐴𝐵))
362adantr 483 . . . . . 6 ((𝜑𝑏𝐵) → 𝐺:𝐵𝐶)
37 2ndinr 9361 . . . . . . . 8 (𝑏𝐵 → (2nd ‘(inr‘𝑏)) = 𝑏)
3837adantl 484 . . . . . . 7 ((𝜑𝑏𝐵) → (2nd ‘(inr‘𝑏)) = 𝑏)
39 simpr 487 . . . . . . 7 ((𝜑𝑏𝐵) → 𝑏𝐵)
4038, 39eqeltrd 2915 . . . . . 6 ((𝜑𝑏𝐵) → (2nd ‘(inr‘𝑏)) ∈ 𝐵)
4136, 40ffvelrnd 6854 . . . . 5 ((𝜑𝑏𝐵) → (𝐺‘(2nd ‘(inr‘𝑏))) ∈ 𝐶)
423, 33, 35, 41fvmptd2 6778 . . . 4 ((𝜑𝑏𝐵) → (𝐻‘(inr‘𝑏)) = (𝐺‘(2nd ‘(inr‘𝑏))))
4318, 42eqtrd 2858 . . 3 ((𝜑𝑏𝐵) → (𝐻‘((inr ↾ 𝐵)‘𝑏)) = (𝐺‘(2nd ‘(inr‘𝑏))))
4438fveq2d 6676 . . 3 ((𝜑𝑏𝐵) → (𝐺‘(2nd ‘(inr‘𝑏))) = (𝐺𝑏))
4515, 43, 443eqtrd 2862 . 2 ((𝜑𝑏𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐺𝑏))
4612, 13, 45eqfnfvd 6807 1 (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wss 3938  c0 4293  ifcif 4469  cmpt 5148  ran crn 5558  cres 5559  ccom 5561   Fn wfn 6352  wf 6353  cfv 6357  1st c1st 7689  2nd c2nd 7690  1oc1o 8097  cdju 9329  inrcinr 9331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-1st 7691  df-2nd 7692  df-1o 8104  df-dju 9332  df-inr 9334
This theorem is referenced by:  updjud  9365
  Copyright terms: Public domain W3C validator