| Step | Hyp | Ref
| Expression |
| 1 | | updjud.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| 2 | | updjud.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
| 3 | | updjudhf.h |
. . . . 5
⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) |
| 4 | 1, 2, 3 | updjudhf 9945 |
. . . 4
⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) |
| 5 | 4 | ffnd 6707 |
. . 3
⊢ (𝜑 → 𝐻 Fn (𝐴 ⊔ 𝐵)) |
| 6 | | inrresf 9930 |
. . . 4
⊢ (inr
↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) |
| 7 | | ffn 6706 |
. . . 4
⊢ ((inr
↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) → (inr ↾ 𝐵) Fn 𝐵) |
| 8 | 6, 7 | mp1i 13 |
. . 3
⊢ (𝜑 → (inr ↾ 𝐵) Fn 𝐵) |
| 9 | | frn 6713 |
. . . 4
⊢ ((inr
↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) → ran (inr ↾ 𝐵) ⊆ (𝐴 ⊔ 𝐵)) |
| 10 | 6, 9 | mp1i 13 |
. . 3
⊢ (𝜑 → ran (inr ↾ 𝐵) ⊆ (𝐴 ⊔ 𝐵)) |
| 11 | | fnco 6656 |
. . 3
⊢ ((𝐻 Fn (𝐴 ⊔ 𝐵) ∧ (inr ↾ 𝐵) Fn 𝐵 ∧ ran (inr ↾ 𝐵) ⊆ (𝐴 ⊔ 𝐵)) → (𝐻 ∘ (inr ↾ 𝐵)) Fn 𝐵) |
| 12 | 5, 8, 10, 11 | syl3anc 1373 |
. 2
⊢ (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) Fn 𝐵) |
| 13 | 2 | ffnd 6707 |
. 2
⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 14 | | fvco2 6976 |
. . . 4
⊢ (((inr
↾ 𝐵) Fn 𝐵 ∧ 𝑏 ∈ 𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐻‘((inr ↾ 𝐵)‘𝑏))) |
| 15 | 8, 14 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐻‘((inr ↾ 𝐵)‘𝑏))) |
| 16 | | fvres 6895 |
. . . . . 6
⊢ (𝑏 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝑏) = (inr‘𝑏)) |
| 17 | 16 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((inr ↾ 𝐵)‘𝑏) = (inr‘𝑏)) |
| 18 | 17 | fveq2d 6880 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐻‘((inr ↾ 𝐵)‘𝑏)) = (𝐻‘(inr‘𝑏))) |
| 19 | | fveqeq2 6885 |
. . . . . . . 8
⊢ (𝑥 = (inr‘𝑏) → ((1st ‘𝑥) = ∅ ↔
(1st ‘(inr‘𝑏)) = ∅)) |
| 20 | | 2fveq3 6881 |
. . . . . . . 8
⊢ (𝑥 = (inr‘𝑏) → (𝐹‘(2nd ‘𝑥)) = (𝐹‘(2nd
‘(inr‘𝑏)))) |
| 21 | | 2fveq3 6881 |
. . . . . . . 8
⊢ (𝑥 = (inr‘𝑏) → (𝐺‘(2nd ‘𝑥)) = (𝐺‘(2nd
‘(inr‘𝑏)))) |
| 22 | 19, 20, 21 | ifbieq12d 4529 |
. . . . . . 7
⊢ (𝑥 = (inr‘𝑏) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) = if((1st
‘(inr‘𝑏)) =
∅, (𝐹‘(2nd
‘(inr‘𝑏))),
(𝐺‘(2nd
‘(inr‘𝑏))))) |
| 23 | 22 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) = if((1st
‘(inr‘𝑏)) =
∅, (𝐹‘(2nd
‘(inr‘𝑏))),
(𝐺‘(2nd
‘(inr‘𝑏))))) |
| 24 | | 1stinr 9943 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝐵 → (1st
‘(inr‘𝑏)) =
1o) |
| 25 | | 1n0 8500 |
. . . . . . . . . . . 12
⊢
1o ≠ ∅ |
| 26 | 25 | neii 2934 |
. . . . . . . . . . 11
⊢ ¬
1o = ∅ |
| 27 | | eqeq1 2739 |
. . . . . . . . . . 11
⊢
((1st ‘(inr‘𝑏)) = 1o → ((1st
‘(inr‘𝑏)) =
∅ ↔ 1o = ∅)) |
| 28 | 26, 27 | mtbiri 327 |
. . . . . . . . . 10
⊢
((1st ‘(inr‘𝑏)) = 1o → ¬
(1st ‘(inr‘𝑏)) = ∅) |
| 29 | 24, 28 | syl 17 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝐵 → ¬ (1st
‘(inr‘𝑏)) =
∅) |
| 30 | 29 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ¬ (1st
‘(inr‘𝑏)) =
∅) |
| 31 | 30 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑥 = (inr‘𝑏)) → ¬ (1st
‘(inr‘𝑏)) =
∅) |
| 32 | 31 | iffalsed 4511 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st
‘(inr‘𝑏)) =
∅, (𝐹‘(2nd
‘(inr‘𝑏))),
(𝐺‘(2nd
‘(inr‘𝑏)))) =
(𝐺‘(2nd
‘(inr‘𝑏)))) |
| 33 | 23, 32 | eqtrd 2770 |
. . . . 5
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) = (𝐺‘(2nd
‘(inr‘𝑏)))) |
| 34 | | djurcl 9925 |
. . . . . 6
⊢ (𝑏 ∈ 𝐵 → (inr‘𝑏) ∈ (𝐴 ⊔ 𝐵)) |
| 35 | 34 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (inr‘𝑏) ∈ (𝐴 ⊔ 𝐵)) |
| 36 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐺:𝐵⟶𝐶) |
| 37 | | 2ndinr 9944 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝐵 → (2nd
‘(inr‘𝑏)) =
𝑏) |
| 38 | 37 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (2nd
‘(inr‘𝑏)) =
𝑏) |
| 39 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
| 40 | 38, 39 | eqeltrd 2834 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (2nd
‘(inr‘𝑏))
∈ 𝐵) |
| 41 | 36, 40 | ffvelcdmd 7075 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐺‘(2nd
‘(inr‘𝑏)))
∈ 𝐶) |
| 42 | 3, 33, 35, 41 | fvmptd2 6994 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐻‘(inr‘𝑏)) = (𝐺‘(2nd
‘(inr‘𝑏)))) |
| 43 | 18, 42 | eqtrd 2770 |
. . 3
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐻‘((inr ↾ 𝐵)‘𝑏)) = (𝐺‘(2nd
‘(inr‘𝑏)))) |
| 44 | 38 | fveq2d 6880 |
. . 3
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐺‘(2nd
‘(inr‘𝑏))) =
(𝐺‘𝑏)) |
| 45 | 15, 43, 44 | 3eqtrd 2774 |
. 2
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐺‘𝑏)) |
| 46 | 12, 13, 45 | eqfnfvd 7024 |
1
⊢ (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺) |