MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  updjudhcoinrg Structured version   Visualization version   GIF version

Theorem updjudhcoinrg 9928
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (πœ‘ β†’ 𝐹:𝐴⟢𝐢)
updjud.g (πœ‘ β†’ 𝐺:𝐡⟢𝐢)
updjudhf.h 𝐻 = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))
Assertion
Ref Expression
updjudhcoinrg (πœ‘ β†’ (𝐻 ∘ (inr β†Ύ 𝐡)) = 𝐺)
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡   π‘₯,𝐢   πœ‘,π‘₯   π‘₯,𝐹   π‘₯,𝐺
Allowed substitution hint:   𝐻(π‘₯)

Proof of Theorem updjudhcoinrg
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 updjud.f . . . . 5 (πœ‘ β†’ 𝐹:𝐴⟢𝐢)
2 updjud.g . . . . 5 (πœ‘ β†’ 𝐺:𝐡⟢𝐢)
3 updjudhf.h . . . . 5 𝐻 = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))
41, 2, 3updjudhf 9926 . . . 4 (πœ‘ β†’ 𝐻:(𝐴 βŠ” 𝐡)⟢𝐢)
54ffnd 6719 . . 3 (πœ‘ β†’ 𝐻 Fn (𝐴 βŠ” 𝐡))
6 inrresf 9911 . . . 4 (inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡)
7 ffn 6718 . . . 4 ((inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡) β†’ (inr β†Ύ 𝐡) Fn 𝐡)
86, 7mp1i 13 . . 3 (πœ‘ β†’ (inr β†Ύ 𝐡) Fn 𝐡)
9 frn 6725 . . . 4 ((inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡) β†’ ran (inr β†Ύ 𝐡) βŠ† (𝐴 βŠ” 𝐡))
106, 9mp1i 13 . . 3 (πœ‘ β†’ ran (inr β†Ύ 𝐡) βŠ† (𝐴 βŠ” 𝐡))
11 fnco 6668 . . 3 ((𝐻 Fn (𝐴 βŠ” 𝐡) ∧ (inr β†Ύ 𝐡) Fn 𝐡 ∧ ran (inr β†Ύ 𝐡) βŠ† (𝐴 βŠ” 𝐡)) β†’ (𝐻 ∘ (inr β†Ύ 𝐡)) Fn 𝐡)
125, 8, 10, 11syl3anc 1372 . 2 (πœ‘ β†’ (𝐻 ∘ (inr β†Ύ 𝐡)) Fn 𝐡)
132ffnd 6719 . 2 (πœ‘ β†’ 𝐺 Fn 𝐡)
14 fvco2 6989 . . . 4 (((inr β†Ύ 𝐡) Fn 𝐡 ∧ 𝑏 ∈ 𝐡) β†’ ((𝐻 ∘ (inr β†Ύ 𝐡))β€˜π‘) = (π»β€˜((inr β†Ύ 𝐡)β€˜π‘)))
158, 14sylan 581 . . 3 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ ((𝐻 ∘ (inr β†Ύ 𝐡))β€˜π‘) = (π»β€˜((inr β†Ύ 𝐡)β€˜π‘)))
16 fvres 6911 . . . . . 6 (𝑏 ∈ 𝐡 β†’ ((inr β†Ύ 𝐡)β€˜π‘) = (inrβ€˜π‘))
1716adantl 483 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ ((inr β†Ύ 𝐡)β€˜π‘) = (inrβ€˜π‘))
1817fveq2d 6896 . . . 4 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (π»β€˜((inr β†Ύ 𝐡)β€˜π‘)) = (π»β€˜(inrβ€˜π‘)))
19 fveqeq2 6901 . . . . . . . 8 (π‘₯ = (inrβ€˜π‘) β†’ ((1st β€˜π‘₯) = βˆ… ↔ (1st β€˜(inrβ€˜π‘)) = βˆ…))
20 2fveq3 6897 . . . . . . . 8 (π‘₯ = (inrβ€˜π‘) β†’ (πΉβ€˜(2nd β€˜π‘₯)) = (πΉβ€˜(2nd β€˜(inrβ€˜π‘))))
21 2fveq3 6897 . . . . . . . 8 (π‘₯ = (inrβ€˜π‘) β†’ (πΊβ€˜(2nd β€˜π‘₯)) = (πΊβ€˜(2nd β€˜(inrβ€˜π‘))))
2219, 20, 21ifbieq12d 4557 . . . . . . 7 (π‘₯ = (inrβ€˜π‘) β†’ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))) = if((1st β€˜(inrβ€˜π‘)) = βˆ…, (πΉβ€˜(2nd β€˜(inrβ€˜π‘))), (πΊβ€˜(2nd β€˜(inrβ€˜π‘)))))
2322adantl 483 . . . . . 6 (((πœ‘ ∧ 𝑏 ∈ 𝐡) ∧ π‘₯ = (inrβ€˜π‘)) β†’ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))) = if((1st β€˜(inrβ€˜π‘)) = βˆ…, (πΉβ€˜(2nd β€˜(inrβ€˜π‘))), (πΊβ€˜(2nd β€˜(inrβ€˜π‘)))))
24 1stinr 9924 . . . . . . . . . 10 (𝑏 ∈ 𝐡 β†’ (1st β€˜(inrβ€˜π‘)) = 1o)
25 1n0 8488 . . . . . . . . . . . 12 1o β‰  βˆ…
2625neii 2943 . . . . . . . . . . 11 Β¬ 1o = βˆ…
27 eqeq1 2737 . . . . . . . . . . 11 ((1st β€˜(inrβ€˜π‘)) = 1o β†’ ((1st β€˜(inrβ€˜π‘)) = βˆ… ↔ 1o = βˆ…))
2826, 27mtbiri 327 . . . . . . . . . 10 ((1st β€˜(inrβ€˜π‘)) = 1o β†’ Β¬ (1st β€˜(inrβ€˜π‘)) = βˆ…)
2924, 28syl 17 . . . . . . . . 9 (𝑏 ∈ 𝐡 β†’ Β¬ (1st β€˜(inrβ€˜π‘)) = βˆ…)
3029adantl 483 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ Β¬ (1st β€˜(inrβ€˜π‘)) = βˆ…)
3130adantr 482 . . . . . . 7 (((πœ‘ ∧ 𝑏 ∈ 𝐡) ∧ π‘₯ = (inrβ€˜π‘)) β†’ Β¬ (1st β€˜(inrβ€˜π‘)) = βˆ…)
3231iffalsed 4540 . . . . . 6 (((πœ‘ ∧ 𝑏 ∈ 𝐡) ∧ π‘₯ = (inrβ€˜π‘)) β†’ if((1st β€˜(inrβ€˜π‘)) = βˆ…, (πΉβ€˜(2nd β€˜(inrβ€˜π‘))), (πΊβ€˜(2nd β€˜(inrβ€˜π‘)))) = (πΊβ€˜(2nd β€˜(inrβ€˜π‘))))
3323, 32eqtrd 2773 . . . . 5 (((πœ‘ ∧ 𝑏 ∈ 𝐡) ∧ π‘₯ = (inrβ€˜π‘)) β†’ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))) = (πΊβ€˜(2nd β€˜(inrβ€˜π‘))))
34 djurcl 9906 . . . . . 6 (𝑏 ∈ 𝐡 β†’ (inrβ€˜π‘) ∈ (𝐴 βŠ” 𝐡))
3534adantl 483 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (inrβ€˜π‘) ∈ (𝐴 βŠ” 𝐡))
362adantr 482 . . . . . 6 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ 𝐺:𝐡⟢𝐢)
37 2ndinr 9925 . . . . . . . 8 (𝑏 ∈ 𝐡 β†’ (2nd β€˜(inrβ€˜π‘)) = 𝑏)
3837adantl 483 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (2nd β€˜(inrβ€˜π‘)) = 𝑏)
39 simpr 486 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ 𝑏 ∈ 𝐡)
4038, 39eqeltrd 2834 . . . . . 6 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (2nd β€˜(inrβ€˜π‘)) ∈ 𝐡)
4136, 40ffvelcdmd 7088 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (πΊβ€˜(2nd β€˜(inrβ€˜π‘))) ∈ 𝐢)
423, 33, 35, 41fvmptd2 7007 . . . 4 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (π»β€˜(inrβ€˜π‘)) = (πΊβ€˜(2nd β€˜(inrβ€˜π‘))))
4318, 42eqtrd 2773 . . 3 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (π»β€˜((inr β†Ύ 𝐡)β€˜π‘)) = (πΊβ€˜(2nd β€˜(inrβ€˜π‘))))
4438fveq2d 6896 . . 3 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (πΊβ€˜(2nd β€˜(inrβ€˜π‘))) = (πΊβ€˜π‘))
4515, 43, 443eqtrd 2777 . 2 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ ((𝐻 ∘ (inr β†Ύ 𝐡))β€˜π‘) = (πΊβ€˜π‘))
4612, 13, 45eqfnfvd 7036 1 (πœ‘ β†’ (𝐻 ∘ (inr β†Ύ 𝐡)) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   βŠ† wss 3949  βˆ…c0 4323  ifcif 4529   ↦ cmpt 5232  ran crn 5678   β†Ύ cres 5679   ∘ ccom 5681   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  1st c1st 7973  2nd c2nd 7974  1oc1o 8459   βŠ” cdju 9893  inrcinr 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1st 7975  df-2nd 7976  df-1o 8466  df-dju 9896  df-inr 9898
This theorem is referenced by:  updjud  9929
  Copyright terms: Public domain W3C validator