MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  updjudhcoinrg Structured version   Visualization version   GIF version

Theorem updjudhcoinrg 9826
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (𝜑𝐹:𝐴𝐶)
updjud.g (𝜑𝐺:𝐵𝐶)
updjudhf.h 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
Assertion
Ref Expression
updjudhcoinrg (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem updjudhcoinrg
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 updjud.f . . . . 5 (𝜑𝐹:𝐴𝐶)
2 updjud.g . . . . 5 (𝜑𝐺:𝐵𝐶)
3 updjudhf.h . . . . 5 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
41, 2, 3updjudhf 9824 . . . 4 (𝜑𝐻:(𝐴𝐵)⟶𝐶)
54ffnd 6652 . . 3 (𝜑𝐻 Fn (𝐴𝐵))
6 inrresf 9809 . . . 4 (inr ↾ 𝐵):𝐵⟶(𝐴𝐵)
7 ffn 6651 . . . 4 ((inr ↾ 𝐵):𝐵⟶(𝐴𝐵) → (inr ↾ 𝐵) Fn 𝐵)
86, 7mp1i 13 . . 3 (𝜑 → (inr ↾ 𝐵) Fn 𝐵)
9 frn 6658 . . . 4 ((inr ↾ 𝐵):𝐵⟶(𝐴𝐵) → ran (inr ↾ 𝐵) ⊆ (𝐴𝐵))
106, 9mp1i 13 . . 3 (𝜑 → ran (inr ↾ 𝐵) ⊆ (𝐴𝐵))
11 fnco 6599 . . 3 ((𝐻 Fn (𝐴𝐵) ∧ (inr ↾ 𝐵) Fn 𝐵 ∧ ran (inr ↾ 𝐵) ⊆ (𝐴𝐵)) → (𝐻 ∘ (inr ↾ 𝐵)) Fn 𝐵)
125, 8, 10, 11syl3anc 1373 . 2 (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) Fn 𝐵)
132ffnd 6652 . 2 (𝜑𝐺 Fn 𝐵)
14 fvco2 6919 . . . 4 (((inr ↾ 𝐵) Fn 𝐵𝑏𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐻‘((inr ↾ 𝐵)‘𝑏)))
158, 14sylan 580 . . 3 ((𝜑𝑏𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐻‘((inr ↾ 𝐵)‘𝑏)))
16 fvres 6841 . . . . . 6 (𝑏𝐵 → ((inr ↾ 𝐵)‘𝑏) = (inr‘𝑏))
1716adantl 481 . . . . 5 ((𝜑𝑏𝐵) → ((inr ↾ 𝐵)‘𝑏) = (inr‘𝑏))
1817fveq2d 6826 . . . 4 ((𝜑𝑏𝐵) → (𝐻‘((inr ↾ 𝐵)‘𝑏)) = (𝐻‘(inr‘𝑏)))
19 fveqeq2 6831 . . . . . . . 8 (𝑥 = (inr‘𝑏) → ((1st𝑥) = ∅ ↔ (1st ‘(inr‘𝑏)) = ∅))
20 2fveq3 6827 . . . . . . . 8 (𝑥 = (inr‘𝑏) → (𝐹‘(2nd𝑥)) = (𝐹‘(2nd ‘(inr‘𝑏))))
21 2fveq3 6827 . . . . . . . 8 (𝑥 = (inr‘𝑏) → (𝐺‘(2nd𝑥)) = (𝐺‘(2nd ‘(inr‘𝑏))))
2219, 20, 21ifbieq12d 4501 . . . . . . 7 (𝑥 = (inr‘𝑏) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inr‘𝑏)) = ∅, (𝐹‘(2nd ‘(inr‘𝑏))), (𝐺‘(2nd ‘(inr‘𝑏)))))
2322adantl 481 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inr‘𝑏)) = ∅, (𝐹‘(2nd ‘(inr‘𝑏))), (𝐺‘(2nd ‘(inr‘𝑏)))))
24 1stinr 9822 . . . . . . . . . 10 (𝑏𝐵 → (1st ‘(inr‘𝑏)) = 1o)
25 1n0 8403 . . . . . . . . . . . 12 1o ≠ ∅
2625neii 2930 . . . . . . . . . . 11 ¬ 1o = ∅
27 eqeq1 2735 . . . . . . . . . . 11 ((1st ‘(inr‘𝑏)) = 1o → ((1st ‘(inr‘𝑏)) = ∅ ↔ 1o = ∅))
2826, 27mtbiri 327 . . . . . . . . . 10 ((1st ‘(inr‘𝑏)) = 1o → ¬ (1st ‘(inr‘𝑏)) = ∅)
2924, 28syl 17 . . . . . . . . 9 (𝑏𝐵 → ¬ (1st ‘(inr‘𝑏)) = ∅)
3029adantl 481 . . . . . . . 8 ((𝜑𝑏𝐵) → ¬ (1st ‘(inr‘𝑏)) = ∅)
3130adantr 480 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → ¬ (1st ‘(inr‘𝑏)) = ∅)
3231iffalsed 4483 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st ‘(inr‘𝑏)) = ∅, (𝐹‘(2nd ‘(inr‘𝑏))), (𝐺‘(2nd ‘(inr‘𝑏)))) = (𝐺‘(2nd ‘(inr‘𝑏))))
3323, 32eqtrd 2766 . . . . 5 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = (𝐺‘(2nd ‘(inr‘𝑏))))
34 djurcl 9804 . . . . . 6 (𝑏𝐵 → (inr‘𝑏) ∈ (𝐴𝐵))
3534adantl 481 . . . . 5 ((𝜑𝑏𝐵) → (inr‘𝑏) ∈ (𝐴𝐵))
362adantr 480 . . . . . 6 ((𝜑𝑏𝐵) → 𝐺:𝐵𝐶)
37 2ndinr 9823 . . . . . . . 8 (𝑏𝐵 → (2nd ‘(inr‘𝑏)) = 𝑏)
3837adantl 481 . . . . . . 7 ((𝜑𝑏𝐵) → (2nd ‘(inr‘𝑏)) = 𝑏)
39 simpr 484 . . . . . . 7 ((𝜑𝑏𝐵) → 𝑏𝐵)
4038, 39eqeltrd 2831 . . . . . 6 ((𝜑𝑏𝐵) → (2nd ‘(inr‘𝑏)) ∈ 𝐵)
4136, 40ffvelcdmd 7018 . . . . 5 ((𝜑𝑏𝐵) → (𝐺‘(2nd ‘(inr‘𝑏))) ∈ 𝐶)
423, 33, 35, 41fvmptd2 6937 . . . 4 ((𝜑𝑏𝐵) → (𝐻‘(inr‘𝑏)) = (𝐺‘(2nd ‘(inr‘𝑏))))
4318, 42eqtrd 2766 . . 3 ((𝜑𝑏𝐵) → (𝐻‘((inr ↾ 𝐵)‘𝑏)) = (𝐺‘(2nd ‘(inr‘𝑏))))
4438fveq2d 6826 . . 3 ((𝜑𝑏𝐵) → (𝐺‘(2nd ‘(inr‘𝑏))) = (𝐺𝑏))
4515, 43, 443eqtrd 2770 . 2 ((𝜑𝑏𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐺𝑏))
4612, 13, 45eqfnfvd 6967 1 (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3897  c0 4280  ifcif 4472  cmpt 5170  ran crn 5615  cres 5616  ccom 5618   Fn wfn 6476  wf 6477  cfv 6481  1st c1st 7919  2nd c2nd 7920  1oc1o 8378  cdju 9791  inrcinr 9793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-dju 9794  df-inr 9796
This theorem is referenced by:  updjud  9827
  Copyright terms: Public domain W3C validator