Step | Hyp | Ref
| Expression |
1 | | updjud.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
2 | | updjud.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
3 | | updjudhf.h |
. . . . 5
⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) |
4 | 1, 2, 3 | updjudhf 9620 |
. . . 4
⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) |
5 | 4 | ffnd 6585 |
. . 3
⊢ (𝜑 → 𝐻 Fn (𝐴 ⊔ 𝐵)) |
6 | | inrresf 9605 |
. . . 4
⊢ (inr
↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) |
7 | | ffn 6584 |
. . . 4
⊢ ((inr
↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) → (inr ↾ 𝐵) Fn 𝐵) |
8 | 6, 7 | mp1i 13 |
. . 3
⊢ (𝜑 → (inr ↾ 𝐵) Fn 𝐵) |
9 | | frn 6591 |
. . . 4
⊢ ((inr
↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) → ran (inr ↾ 𝐵) ⊆ (𝐴 ⊔ 𝐵)) |
10 | 6, 9 | mp1i 13 |
. . 3
⊢ (𝜑 → ran (inr ↾ 𝐵) ⊆ (𝐴 ⊔ 𝐵)) |
11 | | fnco 6533 |
. . 3
⊢ ((𝐻 Fn (𝐴 ⊔ 𝐵) ∧ (inr ↾ 𝐵) Fn 𝐵 ∧ ran (inr ↾ 𝐵) ⊆ (𝐴 ⊔ 𝐵)) → (𝐻 ∘ (inr ↾ 𝐵)) Fn 𝐵) |
12 | 5, 8, 10, 11 | syl3anc 1369 |
. 2
⊢ (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) Fn 𝐵) |
13 | 2 | ffnd 6585 |
. 2
⊢ (𝜑 → 𝐺 Fn 𝐵) |
14 | | fvco2 6847 |
. . . 4
⊢ (((inr
↾ 𝐵) Fn 𝐵 ∧ 𝑏 ∈ 𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐻‘((inr ↾ 𝐵)‘𝑏))) |
15 | 8, 14 | sylan 579 |
. . 3
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐻‘((inr ↾ 𝐵)‘𝑏))) |
16 | | fvres 6775 |
. . . . . 6
⊢ (𝑏 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝑏) = (inr‘𝑏)) |
17 | 16 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((inr ↾ 𝐵)‘𝑏) = (inr‘𝑏)) |
18 | 17 | fveq2d 6760 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐻‘((inr ↾ 𝐵)‘𝑏)) = (𝐻‘(inr‘𝑏))) |
19 | | fveqeq2 6765 |
. . . . . . . 8
⊢ (𝑥 = (inr‘𝑏) → ((1st ‘𝑥) = ∅ ↔
(1st ‘(inr‘𝑏)) = ∅)) |
20 | | 2fveq3 6761 |
. . . . . . . 8
⊢ (𝑥 = (inr‘𝑏) → (𝐹‘(2nd ‘𝑥)) = (𝐹‘(2nd
‘(inr‘𝑏)))) |
21 | | 2fveq3 6761 |
. . . . . . . 8
⊢ (𝑥 = (inr‘𝑏) → (𝐺‘(2nd ‘𝑥)) = (𝐺‘(2nd
‘(inr‘𝑏)))) |
22 | 19, 20, 21 | ifbieq12d 4484 |
. . . . . . 7
⊢ (𝑥 = (inr‘𝑏) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) = if((1st
‘(inr‘𝑏)) =
∅, (𝐹‘(2nd
‘(inr‘𝑏))),
(𝐺‘(2nd
‘(inr‘𝑏))))) |
23 | 22 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) = if((1st
‘(inr‘𝑏)) =
∅, (𝐹‘(2nd
‘(inr‘𝑏))),
(𝐺‘(2nd
‘(inr‘𝑏))))) |
24 | | 1stinr 9618 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝐵 → (1st
‘(inr‘𝑏)) =
1o) |
25 | | 1n0 8286 |
. . . . . . . . . . . 12
⊢
1o ≠ ∅ |
26 | 25 | neii 2944 |
. . . . . . . . . . 11
⊢ ¬
1o = ∅ |
27 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢
((1st ‘(inr‘𝑏)) = 1o → ((1st
‘(inr‘𝑏)) =
∅ ↔ 1o = ∅)) |
28 | 26, 27 | mtbiri 326 |
. . . . . . . . . 10
⊢
((1st ‘(inr‘𝑏)) = 1o → ¬
(1st ‘(inr‘𝑏)) = ∅) |
29 | 24, 28 | syl 17 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝐵 → ¬ (1st
‘(inr‘𝑏)) =
∅) |
30 | 29 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ¬ (1st
‘(inr‘𝑏)) =
∅) |
31 | 30 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑥 = (inr‘𝑏)) → ¬ (1st
‘(inr‘𝑏)) =
∅) |
32 | 31 | iffalsed 4467 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st
‘(inr‘𝑏)) =
∅, (𝐹‘(2nd
‘(inr‘𝑏))),
(𝐺‘(2nd
‘(inr‘𝑏)))) =
(𝐺‘(2nd
‘(inr‘𝑏)))) |
33 | 23, 32 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) = (𝐺‘(2nd
‘(inr‘𝑏)))) |
34 | | djurcl 9600 |
. . . . . 6
⊢ (𝑏 ∈ 𝐵 → (inr‘𝑏) ∈ (𝐴 ⊔ 𝐵)) |
35 | 34 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (inr‘𝑏) ∈ (𝐴 ⊔ 𝐵)) |
36 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐺:𝐵⟶𝐶) |
37 | | 2ndinr 9619 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝐵 → (2nd
‘(inr‘𝑏)) =
𝑏) |
38 | 37 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (2nd
‘(inr‘𝑏)) =
𝑏) |
39 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
40 | 38, 39 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (2nd
‘(inr‘𝑏))
∈ 𝐵) |
41 | 36, 40 | ffvelrnd 6944 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐺‘(2nd
‘(inr‘𝑏)))
∈ 𝐶) |
42 | 3, 33, 35, 41 | fvmptd2 6865 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐻‘(inr‘𝑏)) = (𝐺‘(2nd
‘(inr‘𝑏)))) |
43 | 18, 42 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐻‘((inr ↾ 𝐵)‘𝑏)) = (𝐺‘(2nd
‘(inr‘𝑏)))) |
44 | 38 | fveq2d 6760 |
. . 3
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐺‘(2nd
‘(inr‘𝑏))) =
(𝐺‘𝑏)) |
45 | 15, 43, 44 | 3eqtrd 2782 |
. 2
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐺‘𝑏)) |
46 | 12, 13, 45 | eqfnfvd 6894 |
1
⊢ (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺) |