MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  updjudhcoinrg Structured version   Visualization version   GIF version

Theorem updjudhcoinrg 9930
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (πœ‘ β†’ 𝐹:𝐴⟢𝐢)
updjud.g (πœ‘ β†’ 𝐺:𝐡⟢𝐢)
updjudhf.h 𝐻 = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))
Assertion
Ref Expression
updjudhcoinrg (πœ‘ β†’ (𝐻 ∘ (inr β†Ύ 𝐡)) = 𝐺)
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡   π‘₯,𝐢   πœ‘,π‘₯   π‘₯,𝐹   π‘₯,𝐺
Allowed substitution hint:   𝐻(π‘₯)

Proof of Theorem updjudhcoinrg
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 updjud.f . . . . 5 (πœ‘ β†’ 𝐹:𝐴⟢𝐢)
2 updjud.g . . . . 5 (πœ‘ β†’ 𝐺:𝐡⟢𝐢)
3 updjudhf.h . . . . 5 𝐻 = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))
41, 2, 3updjudhf 9928 . . . 4 (πœ‘ β†’ 𝐻:(𝐴 βŠ” 𝐡)⟢𝐢)
54ffnd 6718 . . 3 (πœ‘ β†’ 𝐻 Fn (𝐴 βŠ” 𝐡))
6 inrresf 9913 . . . 4 (inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡)
7 ffn 6717 . . . 4 ((inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡) β†’ (inr β†Ύ 𝐡) Fn 𝐡)
86, 7mp1i 13 . . 3 (πœ‘ β†’ (inr β†Ύ 𝐡) Fn 𝐡)
9 frn 6724 . . . 4 ((inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡) β†’ ran (inr β†Ύ 𝐡) βŠ† (𝐴 βŠ” 𝐡))
106, 9mp1i 13 . . 3 (πœ‘ β†’ ran (inr β†Ύ 𝐡) βŠ† (𝐴 βŠ” 𝐡))
11 fnco 6667 . . 3 ((𝐻 Fn (𝐴 βŠ” 𝐡) ∧ (inr β†Ύ 𝐡) Fn 𝐡 ∧ ran (inr β†Ύ 𝐡) βŠ† (𝐴 βŠ” 𝐡)) β†’ (𝐻 ∘ (inr β†Ύ 𝐡)) Fn 𝐡)
125, 8, 10, 11syl3anc 1371 . 2 (πœ‘ β†’ (𝐻 ∘ (inr β†Ύ 𝐡)) Fn 𝐡)
132ffnd 6718 . 2 (πœ‘ β†’ 𝐺 Fn 𝐡)
14 fvco2 6988 . . . 4 (((inr β†Ύ 𝐡) Fn 𝐡 ∧ 𝑏 ∈ 𝐡) β†’ ((𝐻 ∘ (inr β†Ύ 𝐡))β€˜π‘) = (π»β€˜((inr β†Ύ 𝐡)β€˜π‘)))
158, 14sylan 580 . . 3 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ ((𝐻 ∘ (inr β†Ύ 𝐡))β€˜π‘) = (π»β€˜((inr β†Ύ 𝐡)β€˜π‘)))
16 fvres 6910 . . . . . 6 (𝑏 ∈ 𝐡 β†’ ((inr β†Ύ 𝐡)β€˜π‘) = (inrβ€˜π‘))
1716adantl 482 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ ((inr β†Ύ 𝐡)β€˜π‘) = (inrβ€˜π‘))
1817fveq2d 6895 . . . 4 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (π»β€˜((inr β†Ύ 𝐡)β€˜π‘)) = (π»β€˜(inrβ€˜π‘)))
19 fveqeq2 6900 . . . . . . . 8 (π‘₯ = (inrβ€˜π‘) β†’ ((1st β€˜π‘₯) = βˆ… ↔ (1st β€˜(inrβ€˜π‘)) = βˆ…))
20 2fveq3 6896 . . . . . . . 8 (π‘₯ = (inrβ€˜π‘) β†’ (πΉβ€˜(2nd β€˜π‘₯)) = (πΉβ€˜(2nd β€˜(inrβ€˜π‘))))
21 2fveq3 6896 . . . . . . . 8 (π‘₯ = (inrβ€˜π‘) β†’ (πΊβ€˜(2nd β€˜π‘₯)) = (πΊβ€˜(2nd β€˜(inrβ€˜π‘))))
2219, 20, 21ifbieq12d 4556 . . . . . . 7 (π‘₯ = (inrβ€˜π‘) β†’ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))) = if((1st β€˜(inrβ€˜π‘)) = βˆ…, (πΉβ€˜(2nd β€˜(inrβ€˜π‘))), (πΊβ€˜(2nd β€˜(inrβ€˜π‘)))))
2322adantl 482 . . . . . 6 (((πœ‘ ∧ 𝑏 ∈ 𝐡) ∧ π‘₯ = (inrβ€˜π‘)) β†’ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))) = if((1st β€˜(inrβ€˜π‘)) = βˆ…, (πΉβ€˜(2nd β€˜(inrβ€˜π‘))), (πΊβ€˜(2nd β€˜(inrβ€˜π‘)))))
24 1stinr 9926 . . . . . . . . . 10 (𝑏 ∈ 𝐡 β†’ (1st β€˜(inrβ€˜π‘)) = 1o)
25 1n0 8490 . . . . . . . . . . . 12 1o β‰  βˆ…
2625neii 2942 . . . . . . . . . . 11 Β¬ 1o = βˆ…
27 eqeq1 2736 . . . . . . . . . . 11 ((1st β€˜(inrβ€˜π‘)) = 1o β†’ ((1st β€˜(inrβ€˜π‘)) = βˆ… ↔ 1o = βˆ…))
2826, 27mtbiri 326 . . . . . . . . . 10 ((1st β€˜(inrβ€˜π‘)) = 1o β†’ Β¬ (1st β€˜(inrβ€˜π‘)) = βˆ…)
2924, 28syl 17 . . . . . . . . 9 (𝑏 ∈ 𝐡 β†’ Β¬ (1st β€˜(inrβ€˜π‘)) = βˆ…)
3029adantl 482 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ Β¬ (1st β€˜(inrβ€˜π‘)) = βˆ…)
3130adantr 481 . . . . . . 7 (((πœ‘ ∧ 𝑏 ∈ 𝐡) ∧ π‘₯ = (inrβ€˜π‘)) β†’ Β¬ (1st β€˜(inrβ€˜π‘)) = βˆ…)
3231iffalsed 4539 . . . . . 6 (((πœ‘ ∧ 𝑏 ∈ 𝐡) ∧ π‘₯ = (inrβ€˜π‘)) β†’ if((1st β€˜(inrβ€˜π‘)) = βˆ…, (πΉβ€˜(2nd β€˜(inrβ€˜π‘))), (πΊβ€˜(2nd β€˜(inrβ€˜π‘)))) = (πΊβ€˜(2nd β€˜(inrβ€˜π‘))))
3323, 32eqtrd 2772 . . . . 5 (((πœ‘ ∧ 𝑏 ∈ 𝐡) ∧ π‘₯ = (inrβ€˜π‘)) β†’ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))) = (πΊβ€˜(2nd β€˜(inrβ€˜π‘))))
34 djurcl 9908 . . . . . 6 (𝑏 ∈ 𝐡 β†’ (inrβ€˜π‘) ∈ (𝐴 βŠ” 𝐡))
3534adantl 482 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (inrβ€˜π‘) ∈ (𝐴 βŠ” 𝐡))
362adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ 𝐺:𝐡⟢𝐢)
37 2ndinr 9927 . . . . . . . 8 (𝑏 ∈ 𝐡 β†’ (2nd β€˜(inrβ€˜π‘)) = 𝑏)
3837adantl 482 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (2nd β€˜(inrβ€˜π‘)) = 𝑏)
39 simpr 485 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ 𝑏 ∈ 𝐡)
4038, 39eqeltrd 2833 . . . . . 6 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (2nd β€˜(inrβ€˜π‘)) ∈ 𝐡)
4136, 40ffvelcdmd 7087 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (πΊβ€˜(2nd β€˜(inrβ€˜π‘))) ∈ 𝐢)
423, 33, 35, 41fvmptd2 7006 . . . 4 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (π»β€˜(inrβ€˜π‘)) = (πΊβ€˜(2nd β€˜(inrβ€˜π‘))))
4318, 42eqtrd 2772 . . 3 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (π»β€˜((inr β†Ύ 𝐡)β€˜π‘)) = (πΊβ€˜(2nd β€˜(inrβ€˜π‘))))
4438fveq2d 6895 . . 3 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (πΊβ€˜(2nd β€˜(inrβ€˜π‘))) = (πΊβ€˜π‘))
4515, 43, 443eqtrd 2776 . 2 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ ((𝐻 ∘ (inr β†Ύ 𝐡))β€˜π‘) = (πΊβ€˜π‘))
4612, 13, 45eqfnfvd 7035 1 (πœ‘ β†’ (𝐻 ∘ (inr β†Ύ 𝐡)) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   βŠ† wss 3948  βˆ…c0 4322  ifcif 4528   ↦ cmpt 5231  ran crn 5677   β†Ύ cres 5678   ∘ ccom 5680   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  1st c1st 7975  2nd c2nd 7976  1oc1o 8461   βŠ” cdju 9895  inrcinr 9897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7858  df-1st 7977  df-2nd 7978  df-1o 8468  df-dju 9898  df-inr 9900
This theorem is referenced by:  updjud  9931
  Copyright terms: Public domain W3C validator