| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpval | Structured version Visualization version GIF version | ||
| Description: Define the value of the decimal point operator. See df-dp 32868. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| dpval | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dp2 32851 | . . 3 ⊢ _𝑥𝑦 = (𝑥 + (𝑦 / ;10)) | |
| 2 | oveq1 7417 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 + (𝑦 / ;10)) = (𝐴 + (𝑦 / ;10))) | |
| 3 | 1, 2 | eqtrid 2783 | . 2 ⊢ (𝑥 = 𝐴 → _𝑥𝑦 = (𝐴 + (𝑦 / ;10))) |
| 4 | oveq1 7417 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 / ;10) = (𝐵 / ;10)) | |
| 5 | 4 | oveq2d 7426 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 + (𝑦 / ;10)) = (𝐴 + (𝐵 / ;10))) |
| 6 | df-dp2 32851 | . . 3 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 7 | 5, 6 | eqtr4di 2789 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 + (𝑦 / ;10)) = _𝐴𝐵) |
| 8 | df-dp 32868 | . 2 ⊢ . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ _𝑥𝑦) | |
| 9 | 6 | ovexi 7444 | . 2 ⊢ _𝐴𝐵 ∈ V |
| 10 | 3, 7, 8, 9 | ovmpo 7572 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 / cdiv 11899 ℕ0cn0 12506 ;cdc 12713 _cdp2 32850 .cdp 32867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-dp2 32851 df-dp 32868 |
| This theorem is referenced by: dpcl 32870 dpfrac1 32871 dpval2 32872 dpmul1000 32878 dpadd2 32889 |
| Copyright terms: Public domain | W3C validator |