Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpval Structured version   Visualization version   GIF version

Theorem dpval 32877
Description: Define the value of the decimal point operator. See df-dp 32876. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dpval ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)

Proof of Theorem dpval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dp2 32859 . . 3 𝑥𝑦 = (𝑥 + (𝑦 / 10))
2 oveq1 7359 . . 3 (𝑥 = 𝐴 → (𝑥 + (𝑦 / 10)) = (𝐴 + (𝑦 / 10)))
31, 2eqtrid 2780 . 2 (𝑥 = 𝐴𝑥𝑦 = (𝐴 + (𝑦 / 10)))
4 oveq1 7359 . . . 4 (𝑦 = 𝐵 → (𝑦 / 10) = (𝐵 / 10))
54oveq2d 7368 . . 3 (𝑦 = 𝐵 → (𝐴 + (𝑦 / 10)) = (𝐴 + (𝐵 / 10)))
6 df-dp2 32859 . . 3 𝐴𝐵 = (𝐴 + (𝐵 / 10))
75, 6eqtr4di 2786 . 2 (𝑦 = 𝐵 → (𝐴 + (𝑦 / 10)) = 𝐴𝐵)
8 df-dp 32876 . 2 . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ 𝑥𝑦)
96ovexi 7386 . 2 𝐴𝐵 ∈ V
103, 7, 8, 9ovmpo 7512 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  (class class class)co 7352  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   / cdiv 11781  0cn0 12388  cdc 12594  cdp2 32858  .cdp 32875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-dp2 32859  df-dp 32876
This theorem is referenced by:  dpcl  32878  dpfrac1  32879  dpval2  32880  dpmul1000  32886  dpadd2  32897
  Copyright terms: Public domain W3C validator