| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpval | Structured version Visualization version GIF version | ||
| Description: Define the value of the decimal point operator. See df-dp 32809. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| dpval | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dp2 32792 | . . 3 ⊢ _𝑥𝑦 = (𝑥 + (𝑦 / ;10)) | |
| 2 | oveq1 7394 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 + (𝑦 / ;10)) = (𝐴 + (𝑦 / ;10))) | |
| 3 | 1, 2 | eqtrid 2776 | . 2 ⊢ (𝑥 = 𝐴 → _𝑥𝑦 = (𝐴 + (𝑦 / ;10))) |
| 4 | oveq1 7394 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 / ;10) = (𝐵 / ;10)) | |
| 5 | 4 | oveq2d 7403 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 + (𝑦 / ;10)) = (𝐴 + (𝐵 / ;10))) |
| 6 | df-dp2 32792 | . . 3 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 7 | 5, 6 | eqtr4di 2782 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 + (𝑦 / ;10)) = _𝐴𝐵) |
| 8 | df-dp 32809 | . 2 ⊢ . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ _𝑥𝑦) | |
| 9 | 6 | ovexi 7421 | . 2 ⊢ _𝐴𝐵 ∈ V |
| 10 | 3, 7, 8, 9 | ovmpo 7549 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 / cdiv 11835 ℕ0cn0 12442 ;cdc 12649 _cdp2 32791 .cdp 32808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-dp2 32792 df-dp 32809 |
| This theorem is referenced by: dpcl 32811 dpfrac1 32812 dpval2 32813 dpmul1000 32819 dpadd2 32830 |
| Copyright terms: Public domain | W3C validator |