Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpval Structured version   Visualization version   GIF version

Theorem dpval 31515
Description: Define the value of the decimal point operator. See df-dp 31514. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dpval ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)

Proof of Theorem dpval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dp2 31497 . . 3 𝑥𝑦 = (𝑥 + (𝑦 / 10))
2 oveq1 7353 . . 3 (𝑥 = 𝐴 → (𝑥 + (𝑦 / 10)) = (𝐴 + (𝑦 / 10)))
31, 2eqtrid 2789 . 2 (𝑥 = 𝐴𝑥𝑦 = (𝐴 + (𝑦 / 10)))
4 oveq1 7353 . . . 4 (𝑦 = 𝐵 → (𝑦 / 10) = (𝐵 / 10))
54oveq2d 7362 . . 3 (𝑦 = 𝐵 → (𝐴 + (𝑦 / 10)) = (𝐴 + (𝐵 / 10)))
6 df-dp2 31497 . . 3 𝐴𝐵 = (𝐴 + (𝐵 / 10))
75, 6eqtr4di 2795 . 2 (𝑦 = 𝐵 → (𝐴 + (𝑦 / 10)) = 𝐴𝐵)
8 df-dp 31514 . 2 . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ 𝑥𝑦)
96ovexi 7380 . 2 𝐴𝐵 ∈ V
103, 7, 8, 9ovmpo 7504 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  (class class class)co 7346  cr 10980  0cc0 10981  1c1 10982   + caddc 10984   / cdiv 11742  0cn0 12343  cdc 12547  cdp2 31496  .cdp 31513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pr 5379
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3735  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-br 5101  df-opab 5163  df-id 5525  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-iota 6440  df-fun 6490  df-fv 6496  df-ov 7349  df-oprab 7350  df-mpo 7351  df-dp2 31497  df-dp 31514
This theorem is referenced by:  dpcl  31516  dpfrac1  31517  dpval2  31518  dpmul1000  31524  dpadd2  31535
  Copyright terms: Public domain W3C validator