| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpval | Structured version Visualization version GIF version | ||
| Description: Define the value of the decimal point operator. See df-dp 32864. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| dpval | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dp2 32847 | . . 3 ⊢ _𝑥𝑦 = (𝑥 + (𝑦 / ;10)) | |
| 2 | oveq1 7353 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 + (𝑦 / ;10)) = (𝐴 + (𝑦 / ;10))) | |
| 3 | 1, 2 | eqtrid 2778 | . 2 ⊢ (𝑥 = 𝐴 → _𝑥𝑦 = (𝐴 + (𝑦 / ;10))) |
| 4 | oveq1 7353 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 / ;10) = (𝐵 / ;10)) | |
| 5 | 4 | oveq2d 7362 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 + (𝑦 / ;10)) = (𝐴 + (𝐵 / ;10))) |
| 6 | df-dp2 32847 | . . 3 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 7 | 5, 6 | eqtr4di 2784 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 + (𝑦 / ;10)) = _𝐴𝐵) |
| 8 | df-dp 32864 | . 2 ⊢ . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ _𝑥𝑦) | |
| 9 | 6 | ovexi 7380 | . 2 ⊢ _𝐴𝐵 ∈ V |
| 10 | 3, 7, 8, 9 | ovmpo 7506 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℝcr 11002 0cc0 11003 1c1 11004 + caddc 11006 / cdiv 11771 ℕ0cn0 12378 ;cdc 12585 _cdp2 32846 .cdp 32863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-dp2 32847 df-dp 32864 |
| This theorem is referenced by: dpcl 32866 dpfrac1 32867 dpval2 32868 dpmul1000 32874 dpadd2 32885 |
| Copyright terms: Public domain | W3C validator |