Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpval Structured version   Visualization version   GIF version

Theorem dpval 32817
Description: Define the value of the decimal point operator. See df-dp 32816. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dpval ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)

Proof of Theorem dpval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dp2 32799 . . 3 𝑥𝑦 = (𝑥 + (𝑦 / 10))
2 oveq1 7397 . . 3 (𝑥 = 𝐴 → (𝑥 + (𝑦 / 10)) = (𝐴 + (𝑦 / 10)))
31, 2eqtrid 2777 . 2 (𝑥 = 𝐴𝑥𝑦 = (𝐴 + (𝑦 / 10)))
4 oveq1 7397 . . . 4 (𝑦 = 𝐵 → (𝑦 / 10) = (𝐵 / 10))
54oveq2d 7406 . . 3 (𝑦 = 𝐵 → (𝐴 + (𝑦 / 10)) = (𝐴 + (𝐵 / 10)))
6 df-dp2 32799 . . 3 𝐴𝐵 = (𝐴 + (𝐵 / 10))
75, 6eqtr4di 2783 . 2 (𝑦 = 𝐵 → (𝐴 + (𝑦 / 10)) = 𝐴𝐵)
8 df-dp 32816 . 2 . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ 𝑥𝑦)
96ovexi 7424 . 2 𝐴𝐵 ∈ V
103, 7, 8, 9ovmpo 7552 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   / cdiv 11842  0cn0 12449  cdc 12656  cdp2 32798  .cdp 32815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-dp2 32799  df-dp 32816
This theorem is referenced by:  dpcl  32818  dpfrac1  32819  dpval2  32820  dpmul1000  32826  dpadd2  32837
  Copyright terms: Public domain W3C validator