| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpval | Structured version Visualization version GIF version | ||
| Description: Define the value of the decimal point operator. See df-dp 32876. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| dpval | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dp2 32859 | . . 3 ⊢ _𝑥𝑦 = (𝑥 + (𝑦 / ;10)) | |
| 2 | oveq1 7359 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 + (𝑦 / ;10)) = (𝐴 + (𝑦 / ;10))) | |
| 3 | 1, 2 | eqtrid 2780 | . 2 ⊢ (𝑥 = 𝐴 → _𝑥𝑦 = (𝐴 + (𝑦 / ;10))) |
| 4 | oveq1 7359 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 / ;10) = (𝐵 / ;10)) | |
| 5 | 4 | oveq2d 7368 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 + (𝑦 / ;10)) = (𝐴 + (𝐵 / ;10))) |
| 6 | df-dp2 32859 | . . 3 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 7 | 5, 6 | eqtr4di 2786 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 + (𝑦 / ;10)) = _𝐴𝐵) |
| 8 | df-dp 32876 | . 2 ⊢ . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ _𝑥𝑦) | |
| 9 | 6 | ovexi 7386 | . 2 ⊢ _𝐴𝐵 ∈ V |
| 10 | 3, 7, 8, 9 | ovmpo 7512 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℝcr 11012 0cc0 11013 1c1 11014 + caddc 11016 / cdiv 11781 ℕ0cn0 12388 ;cdc 12594 _cdp2 32858 .cdp 32875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-dp2 32859 df-dp 32876 |
| This theorem is referenced by: dpcl 32878 dpfrac1 32879 dpval2 32880 dpmul1000 32886 dpadd2 32897 |
| Copyright terms: Public domain | W3C validator |