Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpval Structured version   Visualization version   GIF version

Theorem dpval 32056
Description: Define the value of the decimal point operator. See df-dp 32055. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dpval ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)

Proof of Theorem dpval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dp2 32038 . . 3 𝑥𝑦 = (𝑥 + (𝑦 / 10))
2 oveq1 7416 . . 3 (𝑥 = 𝐴 → (𝑥 + (𝑦 / 10)) = (𝐴 + (𝑦 / 10)))
31, 2eqtrid 2785 . 2 (𝑥 = 𝐴𝑥𝑦 = (𝐴 + (𝑦 / 10)))
4 oveq1 7416 . . . 4 (𝑦 = 𝐵 → (𝑦 / 10) = (𝐵 / 10))
54oveq2d 7425 . . 3 (𝑦 = 𝐵 → (𝐴 + (𝑦 / 10)) = (𝐴 + (𝐵 / 10)))
6 df-dp2 32038 . . 3 𝐴𝐵 = (𝐴 + (𝐵 / 10))
75, 6eqtr4di 2791 . 2 (𝑦 = 𝐵 → (𝐴 + (𝑦 / 10)) = 𝐴𝐵)
8 df-dp 32055 . 2 . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ 𝑥𝑦)
96ovexi 7443 . 2 𝐴𝐵 ∈ V
103, 7, 8, 9ovmpo 7568 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  (class class class)co 7409  cr 11109  0cc0 11110  1c1 11111   + caddc 11113   / cdiv 11871  0cn0 12472  cdc 12677  cdp2 32037  .cdp 32054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-dp2 32038  df-dp 32055
This theorem is referenced by:  dpcl  32057  dpfrac1  32058  dpval2  32059  dpmul1000  32065  dpadd2  32076
  Copyright terms: Public domain W3C validator