Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpfrac1 | Structured version Visualization version GIF version |
Description: Prove a simple equivalence involving the decimal point. See df-dp 30687 and dpcl 30689. (Contributed by David A. Wheeler, 15-May-2015.) (Revised by AV, 9-Sep-2021.) |
Ref | Expression |
---|---|
dpfrac1 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = (;𝐴𝐵 / ;10)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dp2 30670 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
2 | dpval 30688 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) | |
3 | nn0cn 11944 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) | |
4 | recn 10665 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
5 | dfdec10 12140 | . . . . 5 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
6 | 5 | oveq1i 7160 | . . . 4 ⊢ (;𝐴𝐵 / ;10) = (((;10 · 𝐴) + 𝐵) / ;10) |
7 | 10re 12156 | . . . . . . . . 9 ⊢ ;10 ∈ ℝ | |
8 | 7 | recni 10693 | . . . . . . . 8 ⊢ ;10 ∈ ℂ |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ;10 ∈ ℂ) |
10 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
11 | 9, 10 | mulcld 10699 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (;10 · 𝐴) ∈ ℂ) |
12 | 10pos 12154 | . . . . . . . . 9 ⊢ 0 < ;10 | |
13 | 7, 12 | gt0ne0ii 11214 | . . . . . . . 8 ⊢ ;10 ≠ 0 |
14 | 8, 13 | pm3.2i 474 | . . . . . . 7 ⊢ (;10 ∈ ℂ ∧ ;10 ≠ 0) |
15 | divdir 11361 | . . . . . . 7 ⊢ (((;10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (;10 ∈ ℂ ∧ ;10 ≠ 0)) → (((;10 · 𝐴) + 𝐵) / ;10) = (((;10 · 𝐴) / ;10) + (𝐵 / ;10))) | |
16 | 14, 15 | mp3an3 1447 | . . . . . 6 ⊢ (((;10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((;10 · 𝐴) + 𝐵) / ;10) = (((;10 · 𝐴) / ;10) + (𝐵 / ;10))) |
17 | 11, 16 | sylan 583 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((;10 · 𝐴) + 𝐵) / ;10) = (((;10 · 𝐴) / ;10) + (𝐵 / ;10))) |
18 | divcan3 11362 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ ;10 ∈ ℂ ∧ ;10 ≠ 0) → ((;10 · 𝐴) / ;10) = 𝐴) | |
19 | 8, 13, 18 | mp3an23 1450 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((;10 · 𝐴) / ;10) = 𝐴) |
20 | 19 | oveq1d 7165 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (((;10 · 𝐴) / ;10) + (𝐵 / ;10)) = (𝐴 + (𝐵 / ;10))) |
21 | 20 | adantr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((;10 · 𝐴) / ;10) + (𝐵 / ;10)) = (𝐴 + (𝐵 / ;10))) |
22 | 17, 21 | eqtrd 2793 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((;10 · 𝐴) + 𝐵) / ;10) = (𝐴 + (𝐵 / ;10))) |
23 | 6, 22 | syl5eq 2805 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (;𝐴𝐵 / ;10) = (𝐴 + (𝐵 / ;10))) |
24 | 3, 4, 23 | syl2an 598 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (;𝐴𝐵 / ;10) = (𝐴 + (𝐵 / ;10))) |
25 | 1, 2, 24 | 3eqtr4a 2819 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = (;𝐴𝐵 / ;10)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 (class class class)co 7150 ℂcc 10573 ℝcr 10574 0cc0 10575 1c1 10576 + caddc 10578 · cmul 10580 / cdiv 11335 ℕ0cn0 11934 ;cdc 12137 _cdp2 30669 .cdp 30686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-dec 12138 df-dp2 30670 df-dp 30687 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |