| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpfrac1 | Structured version Visualization version GIF version | ||
| Description: Prove a simple equivalence involving the decimal point. See df-dp 32809 and dpcl 32811. (Contributed by David A. Wheeler, 15-May-2015.) (Revised by AV, 9-Sep-2021.) |
| Ref | Expression |
|---|---|
| dpfrac1 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = (;𝐴𝐵 / ;10)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dp2 32792 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 2 | dpval 32810 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) | |
| 3 | nn0cn 12509 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) | |
| 4 | recn 11217 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 5 | dfdec10 12709 | . . . . 5 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 6 | 5 | oveq1i 7413 | . . . 4 ⊢ (;𝐴𝐵 / ;10) = (((;10 · 𝐴) + 𝐵) / ;10) |
| 7 | 10re 12725 | . . . . . . . . 9 ⊢ ;10 ∈ ℝ | |
| 8 | 7 | recni 11247 | . . . . . . . 8 ⊢ ;10 ∈ ℂ |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ;10 ∈ ℂ) |
| 10 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 11 | 9, 10 | mulcld 11253 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (;10 · 𝐴) ∈ ℂ) |
| 12 | 10pos 12723 | . . . . . . . . 9 ⊢ 0 < ;10 | |
| 13 | 7, 12 | gt0ne0ii 11771 | . . . . . . . 8 ⊢ ;10 ≠ 0 |
| 14 | 8, 13 | pm3.2i 470 | . . . . . . 7 ⊢ (;10 ∈ ℂ ∧ ;10 ≠ 0) |
| 15 | divdir 11919 | . . . . . . 7 ⊢ (((;10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (;10 ∈ ℂ ∧ ;10 ≠ 0)) → (((;10 · 𝐴) + 𝐵) / ;10) = (((;10 · 𝐴) / ;10) + (𝐵 / ;10))) | |
| 16 | 14, 15 | mp3an3 1452 | . . . . . 6 ⊢ (((;10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((;10 · 𝐴) + 𝐵) / ;10) = (((;10 · 𝐴) / ;10) + (𝐵 / ;10))) |
| 17 | 11, 16 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((;10 · 𝐴) + 𝐵) / ;10) = (((;10 · 𝐴) / ;10) + (𝐵 / ;10))) |
| 18 | divcan3 11920 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ ;10 ∈ ℂ ∧ ;10 ≠ 0) → ((;10 · 𝐴) / ;10) = 𝐴) | |
| 19 | 8, 13, 18 | mp3an23 1455 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((;10 · 𝐴) / ;10) = 𝐴) |
| 20 | 19 | oveq1d 7418 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (((;10 · 𝐴) / ;10) + (𝐵 / ;10)) = (𝐴 + (𝐵 / ;10))) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((;10 · 𝐴) / ;10) + (𝐵 / ;10)) = (𝐴 + (𝐵 / ;10))) |
| 22 | 17, 21 | eqtrd 2770 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((;10 · 𝐴) + 𝐵) / ;10) = (𝐴 + (𝐵 / ;10))) |
| 23 | 6, 22 | eqtrid 2782 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (;𝐴𝐵 / ;10) = (𝐴 + (𝐵 / ;10))) |
| 24 | 3, 4, 23 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (;𝐴𝐵 / ;10) = (𝐴 + (𝐵 / ;10))) |
| 25 | 1, 2, 24 | 3eqtr4a 2796 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = (;𝐴𝐵 / ;10)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 (class class class)co 7403 ℂcc 11125 ℝcr 11126 0cc0 11127 1c1 11128 + caddc 11130 · cmul 11132 / cdiv 11892 ℕ0cn0 12499 ;cdc 12706 _cdp2 32791 .cdp 32808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-dec 12707 df-dp2 32792 df-dp 32809 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |