Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpfrac1 Structured version   Visualization version   GIF version

Theorem dpfrac1 32785
Description: Prove a simple equivalence involving the decimal point. See df-dp 32782 and dpcl 32784. (Contributed by David A. Wheeler, 15-May-2015.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
dpfrac1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = (𝐴𝐵 / 10))

Proof of Theorem dpfrac1
StepHypRef Expression
1 df-dp2 32765 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
2 dpval 32783 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)
3 nn0cn 12428 . . 3 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
4 recn 11134 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5 dfdec10 12628 . . . . 5 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
65oveq1i 7379 . . . 4 (𝐴𝐵 / 10) = (((10 · 𝐴) + 𝐵) / 10)
7 10re 12644 . . . . . . . . 9 10 ∈ ℝ
87recni 11164 . . . . . . . 8 10 ∈ ℂ
98a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → 10 ∈ ℂ)
10 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
119, 10mulcld 11170 . . . . . 6 (𝐴 ∈ ℂ → (10 · 𝐴) ∈ ℂ)
12 10pos 12642 . . . . . . . . 9 0 < 10
137, 12gt0ne0ii 11690 . . . . . . . 8 10 ≠ 0
148, 13pm3.2i 470 . . . . . . 7 (10 ∈ ℂ ∧ 10 ≠ 0)
15 divdir 11838 . . . . . . 7 (((10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (10 ∈ ℂ ∧ 10 ≠ 0)) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10)))
1614, 15mp3an3 1452 . . . . . 6 (((10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10)))
1711, 16sylan 580 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10)))
18 divcan3 11839 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 10 ∈ ℂ ∧ 10 ≠ 0) → ((10 · 𝐴) / 10) = 𝐴)
198, 13, 18mp3an23 1455 . . . . . . 7 (𝐴 ∈ ℂ → ((10 · 𝐴) / 10) = 𝐴)
2019oveq1d 7384 . . . . . 6 (𝐴 ∈ ℂ → (((10 · 𝐴) / 10) + (𝐵 / 10)) = (𝐴 + (𝐵 / 10)))
2120adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) / 10) + (𝐵 / 10)) = (𝐴 + (𝐵 / 10)))
2217, 21eqtrd 2764 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (𝐴 + (𝐵 / 10)))
236, 22eqtrid 2776 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵 / 10) = (𝐴 + (𝐵 / 10)))
243, 4, 23syl2an 596 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴𝐵 / 10) = (𝐴 + (𝐵 / 10)))
251, 2, 243eqtr4a 2790 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = (𝐴𝐵 / 10))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   / cdiv 11811  0cn0 12418  cdc 12625  cdp2 32764  .cdp 32781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-dec 12626  df-dp2 32765  df-dp 32782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator