Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpfrac1 Structured version   Visualization version   GIF version

Theorem dpfrac1 32812
Description: Prove a simple equivalence involving the decimal point. See df-dp 32809 and dpcl 32811. (Contributed by David A. Wheeler, 15-May-2015.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
dpfrac1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = (𝐴𝐵 / 10))

Proof of Theorem dpfrac1
StepHypRef Expression
1 df-dp2 32792 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
2 dpval 32810 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)
3 nn0cn 12509 . . 3 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
4 recn 11217 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5 dfdec10 12709 . . . . 5 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
65oveq1i 7413 . . . 4 (𝐴𝐵 / 10) = (((10 · 𝐴) + 𝐵) / 10)
7 10re 12725 . . . . . . . . 9 10 ∈ ℝ
87recni 11247 . . . . . . . 8 10 ∈ ℂ
98a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → 10 ∈ ℂ)
10 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
119, 10mulcld 11253 . . . . . 6 (𝐴 ∈ ℂ → (10 · 𝐴) ∈ ℂ)
12 10pos 12723 . . . . . . . . 9 0 < 10
137, 12gt0ne0ii 11771 . . . . . . . 8 10 ≠ 0
148, 13pm3.2i 470 . . . . . . 7 (10 ∈ ℂ ∧ 10 ≠ 0)
15 divdir 11919 . . . . . . 7 (((10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (10 ∈ ℂ ∧ 10 ≠ 0)) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10)))
1614, 15mp3an3 1452 . . . . . 6 (((10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10)))
1711, 16sylan 580 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10)))
18 divcan3 11920 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 10 ∈ ℂ ∧ 10 ≠ 0) → ((10 · 𝐴) / 10) = 𝐴)
198, 13, 18mp3an23 1455 . . . . . . 7 (𝐴 ∈ ℂ → ((10 · 𝐴) / 10) = 𝐴)
2019oveq1d 7418 . . . . . 6 (𝐴 ∈ ℂ → (((10 · 𝐴) / 10) + (𝐵 / 10)) = (𝐴 + (𝐵 / 10)))
2120adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) / 10) + (𝐵 / 10)) = (𝐴 + (𝐵 / 10)))
2217, 21eqtrd 2770 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (𝐴 + (𝐵 / 10)))
236, 22eqtrid 2782 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵 / 10) = (𝐴 + (𝐵 / 10)))
243, 4, 23syl2an 596 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴𝐵 / 10) = (𝐴 + (𝐵 / 10)))
251, 2, 243eqtr4a 2796 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = (𝐴𝐵 / 10))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132   / cdiv 11892  0cn0 12499  cdc 12706  cdp2 32791  .cdp 32808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-dec 12707  df-dp2 32792  df-dp 32809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator