| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpfrac1 | Structured version Visualization version GIF version | ||
| Description: Prove a simple equivalence involving the decimal point. See df-dp 32869 and dpcl 32871. (Contributed by David A. Wheeler, 15-May-2015.) (Revised by AV, 9-Sep-2021.) |
| Ref | Expression |
|---|---|
| dpfrac1 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = (;𝐴𝐵 / ;10)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dp2 32852 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 2 | dpval 32870 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) | |
| 3 | nn0cn 12391 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) | |
| 4 | recn 11096 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 5 | dfdec10 12591 | . . . . 5 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 6 | 5 | oveq1i 7356 | . . . 4 ⊢ (;𝐴𝐵 / ;10) = (((;10 · 𝐴) + 𝐵) / ;10) |
| 7 | 10re 12607 | . . . . . . . . 9 ⊢ ;10 ∈ ℝ | |
| 8 | 7 | recni 11126 | . . . . . . . 8 ⊢ ;10 ∈ ℂ |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ;10 ∈ ℂ) |
| 10 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 11 | 9, 10 | mulcld 11132 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (;10 · 𝐴) ∈ ℂ) |
| 12 | 10pos 12605 | . . . . . . . . 9 ⊢ 0 < ;10 | |
| 13 | 7, 12 | gt0ne0ii 11653 | . . . . . . . 8 ⊢ ;10 ≠ 0 |
| 14 | 8, 13 | pm3.2i 470 | . . . . . . 7 ⊢ (;10 ∈ ℂ ∧ ;10 ≠ 0) |
| 15 | divdir 11801 | . . . . . . 7 ⊢ (((;10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (;10 ∈ ℂ ∧ ;10 ≠ 0)) → (((;10 · 𝐴) + 𝐵) / ;10) = (((;10 · 𝐴) / ;10) + (𝐵 / ;10))) | |
| 16 | 14, 15 | mp3an3 1452 | . . . . . 6 ⊢ (((;10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((;10 · 𝐴) + 𝐵) / ;10) = (((;10 · 𝐴) / ;10) + (𝐵 / ;10))) |
| 17 | 11, 16 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((;10 · 𝐴) + 𝐵) / ;10) = (((;10 · 𝐴) / ;10) + (𝐵 / ;10))) |
| 18 | divcan3 11802 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ ;10 ∈ ℂ ∧ ;10 ≠ 0) → ((;10 · 𝐴) / ;10) = 𝐴) | |
| 19 | 8, 13, 18 | mp3an23 1455 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((;10 · 𝐴) / ;10) = 𝐴) |
| 20 | 19 | oveq1d 7361 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (((;10 · 𝐴) / ;10) + (𝐵 / ;10)) = (𝐴 + (𝐵 / ;10))) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((;10 · 𝐴) / ;10) + (𝐵 / ;10)) = (𝐴 + (𝐵 / ;10))) |
| 22 | 17, 21 | eqtrd 2766 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((;10 · 𝐴) + 𝐵) / ;10) = (𝐴 + (𝐵 / ;10))) |
| 23 | 6, 22 | eqtrid 2778 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (;𝐴𝐵 / ;10) = (𝐴 + (𝐵 / ;10))) |
| 24 | 3, 4, 23 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (;𝐴𝐵 / ;10) = (𝐴 + (𝐵 / ;10))) |
| 25 | 1, 2, 24 | 3eqtr4a 2792 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = (;𝐴𝐵 / ;10)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 / cdiv 11774 ℕ0cn0 12381 ;cdc 12588 _cdp2 32851 .cdp 32868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-dec 12589 df-dp2 32852 df-dp 32869 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |