![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpadd2 | Structured version Visualization version GIF version |
Description: Addition with one decimal, no carry. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
Ref | Expression |
---|---|
dpadd2.a | ⊢ 𝐴 ∈ ℕ0 |
dpadd2.b | ⊢ 𝐵 ∈ ℝ+ |
dpadd2.c | ⊢ 𝐶 ∈ ℕ0 |
dpadd2.d | ⊢ 𝐷 ∈ ℝ+ |
dpadd2.e | ⊢ 𝐸 ∈ ℕ0 |
dpadd2.f | ⊢ 𝐹 ∈ ℝ+ |
dpadd2.g | ⊢ 𝐺 ∈ ℕ0 |
dpadd2.h | ⊢ 𝐻 ∈ ℕ0 |
dpadd2.i | ⊢ (𝐺 + 𝐻) = 𝐼 |
dpadd2.1 | ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) |
Ref | Expression |
---|---|
dpadd2 | ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = (𝐼._𝐸𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpadd2.g | . . . 4 ⊢ 𝐺 ∈ ℕ0 | |
2 | dpadd2.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
3 | 2 | nn0rei 12424 | . . . . 5 ⊢ 𝐴 ∈ ℝ |
4 | dpadd2.b | . . . . . 6 ⊢ 𝐵 ∈ ℝ+ | |
5 | rpre 12923 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
7 | dp2cl 31736 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → _𝐴𝐵 ∈ ℝ) | |
8 | 3, 6, 7 | mp2an 690 | . . . 4 ⊢ _𝐴𝐵 ∈ ℝ |
9 | 1, 8 | dpval2 31749 | . . 3 ⊢ (𝐺._𝐴𝐵) = (𝐺 + (_𝐴𝐵 / ;10)) |
10 | dpadd2.h | . . . 4 ⊢ 𝐻 ∈ ℕ0 | |
11 | dpadd2.c | . . . . . 6 ⊢ 𝐶 ∈ ℕ0 | |
12 | 11 | nn0rei 12424 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
13 | dpadd2.d | . . . . . 6 ⊢ 𝐷 ∈ ℝ+ | |
14 | rpre 12923 | . . . . . 6 ⊢ (𝐷 ∈ ℝ+ → 𝐷 ∈ ℝ) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 𝐷 ∈ ℝ |
16 | dp2cl 31736 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → _𝐶𝐷 ∈ ℝ) | |
17 | 12, 15, 16 | mp2an 690 | . . . 4 ⊢ _𝐶𝐷 ∈ ℝ |
18 | 10, 17 | dpval2 31749 | . . 3 ⊢ (𝐻._𝐶𝐷) = (𝐻 + (_𝐶𝐷 / ;10)) |
19 | 9, 18 | oveq12i 7369 | . 2 ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = ((𝐺 + (_𝐴𝐵 / ;10)) + (𝐻 + (_𝐶𝐷 / ;10))) |
20 | 1 | nn0cni 12425 | . . 3 ⊢ 𝐺 ∈ ℂ |
21 | 8 | recni 11169 | . . . 4 ⊢ _𝐴𝐵 ∈ ℂ |
22 | 10nn 12634 | . . . . 5 ⊢ ;10 ∈ ℕ | |
23 | 22 | nncni 12163 | . . . 4 ⊢ ;10 ∈ ℂ |
24 | 22 | nnne0i 12193 | . . . 4 ⊢ ;10 ≠ 0 |
25 | 21, 23, 24 | divcli 11897 | . . 3 ⊢ (_𝐴𝐵 / ;10) ∈ ℂ |
26 | 10 | nn0cni 12425 | . . 3 ⊢ 𝐻 ∈ ℂ |
27 | 17 | recni 11169 | . . . 4 ⊢ _𝐶𝐷 ∈ ℂ |
28 | 27, 23, 24 | divcli 11897 | . . 3 ⊢ (_𝐶𝐷 / ;10) ∈ ℂ |
29 | 20, 25, 26, 28 | add4i 11379 | . 2 ⊢ ((𝐺 + (_𝐴𝐵 / ;10)) + (𝐻 + (_𝐶𝐷 / ;10))) = ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) |
30 | dpadd2.i | . . . 4 ⊢ (𝐺 + 𝐻) = 𝐼 | |
31 | 21, 27, 23, 24 | divdiri 11912 | . . . . 5 ⊢ ((_𝐴𝐵 + _𝐶𝐷) / ;10) = ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10)) |
32 | dpadd2.1 | . . . . . . 7 ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) | |
33 | dpval 31746 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) | |
34 | 2, 6, 33 | mp2an 690 | . . . . . . . 8 ⊢ (𝐴.𝐵) = _𝐴𝐵 |
35 | dpval 31746 | . . . . . . . . 9 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ) → (𝐶.𝐷) = _𝐶𝐷) | |
36 | 11, 15, 35 | mp2an 690 | . . . . . . . 8 ⊢ (𝐶.𝐷) = _𝐶𝐷 |
37 | 34, 36 | oveq12i 7369 | . . . . . . 7 ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (_𝐴𝐵 + _𝐶𝐷) |
38 | dpadd2.e | . . . . . . . 8 ⊢ 𝐸 ∈ ℕ0 | |
39 | dpadd2.f | . . . . . . . . 9 ⊢ 𝐹 ∈ ℝ+ | |
40 | rpre 12923 | . . . . . . . . 9 ⊢ (𝐹 ∈ ℝ+ → 𝐹 ∈ ℝ) | |
41 | 39, 40 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐹 ∈ ℝ |
42 | dpval 31746 | . . . . . . . 8 ⊢ ((𝐸 ∈ ℕ0 ∧ 𝐹 ∈ ℝ) → (𝐸.𝐹) = _𝐸𝐹) | |
43 | 38, 41, 42 | mp2an 690 | . . . . . . 7 ⊢ (𝐸.𝐹) = _𝐸𝐹 |
44 | 32, 37, 43 | 3eqtr3i 2772 | . . . . . 6 ⊢ (_𝐴𝐵 + _𝐶𝐷) = _𝐸𝐹 |
45 | 44 | oveq1i 7367 | . . . . 5 ⊢ ((_𝐴𝐵 + _𝐶𝐷) / ;10) = (_𝐸𝐹 / ;10) |
46 | 31, 45 | eqtr3i 2766 | . . . 4 ⊢ ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10)) = (_𝐸𝐹 / ;10) |
47 | 30, 46 | oveq12i 7369 | . . 3 ⊢ ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) = (𝐼 + (_𝐸𝐹 / ;10)) |
48 | 1, 10 | nn0addcli 12450 | . . . . 5 ⊢ (𝐺 + 𝐻) ∈ ℕ0 |
49 | 30, 48 | eqeltrri 2835 | . . . 4 ⊢ 𝐼 ∈ ℕ0 |
50 | 38 | nn0rei 12424 | . . . . 5 ⊢ 𝐸 ∈ ℝ |
51 | dp2cl 31736 | . . . . 5 ⊢ ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → _𝐸𝐹 ∈ ℝ) | |
52 | 50, 41, 51 | mp2an 690 | . . . 4 ⊢ _𝐸𝐹 ∈ ℝ |
53 | 49, 52 | dpval2 31749 | . . 3 ⊢ (𝐼._𝐸𝐹) = (𝐼 + (_𝐸𝐹 / ;10)) |
54 | 47, 53 | eqtr4i 2767 | . 2 ⊢ ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) = (𝐼._𝐸𝐹) |
55 | 19, 29, 54 | 3eqtri 2768 | 1 ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = (𝐼._𝐸𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 (class class class)co 7357 ℝcr 11050 0cc0 11051 1c1 11052 + caddc 11054 / cdiv 11812 ℕ0cn0 12413 ;cdc 12618 ℝ+crp 12915 _cdp2 31727 .cdp 31744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-dec 12619 df-rp 12916 df-dp2 31728 df-dp 31745 |
This theorem is referenced by: hgt750lemd 33261 |
Copyright terms: Public domain | W3C validator |