| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpadd2 | Structured version Visualization version GIF version | ||
| Description: Addition with one decimal, no carry. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
| Ref | Expression |
|---|---|
| dpadd2.a | ⊢ 𝐴 ∈ ℕ0 |
| dpadd2.b | ⊢ 𝐵 ∈ ℝ+ |
| dpadd2.c | ⊢ 𝐶 ∈ ℕ0 |
| dpadd2.d | ⊢ 𝐷 ∈ ℝ+ |
| dpadd2.e | ⊢ 𝐸 ∈ ℕ0 |
| dpadd2.f | ⊢ 𝐹 ∈ ℝ+ |
| dpadd2.g | ⊢ 𝐺 ∈ ℕ0 |
| dpadd2.h | ⊢ 𝐻 ∈ ℕ0 |
| dpadd2.i | ⊢ (𝐺 + 𝐻) = 𝐼 |
| dpadd2.1 | ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) |
| Ref | Expression |
|---|---|
| dpadd2 | ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = (𝐼._𝐸𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpadd2.g | . . . 4 ⊢ 𝐺 ∈ ℕ0 | |
| 2 | dpadd2.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 2 | nn0rei 12413 | . . . . 5 ⊢ 𝐴 ∈ ℝ |
| 4 | dpadd2.b | . . . . . 6 ⊢ 𝐵 ∈ ℝ+ | |
| 5 | rpre 12920 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
| 7 | dp2cl 32833 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → _𝐴𝐵 ∈ ℝ) | |
| 8 | 3, 6, 7 | mp2an 692 | . . . 4 ⊢ _𝐴𝐵 ∈ ℝ |
| 9 | 1, 8 | dpval2 32846 | . . 3 ⊢ (𝐺._𝐴𝐵) = (𝐺 + (_𝐴𝐵 / ;10)) |
| 10 | dpadd2.h | . . . 4 ⊢ 𝐻 ∈ ℕ0 | |
| 11 | dpadd2.c | . . . . . 6 ⊢ 𝐶 ∈ ℕ0 | |
| 12 | 11 | nn0rei 12413 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
| 13 | dpadd2.d | . . . . . 6 ⊢ 𝐷 ∈ ℝ+ | |
| 14 | rpre 12920 | . . . . . 6 ⊢ (𝐷 ∈ ℝ+ → 𝐷 ∈ ℝ) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 𝐷 ∈ ℝ |
| 16 | dp2cl 32833 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → _𝐶𝐷 ∈ ℝ) | |
| 17 | 12, 15, 16 | mp2an 692 | . . . 4 ⊢ _𝐶𝐷 ∈ ℝ |
| 18 | 10, 17 | dpval2 32846 | . . 3 ⊢ (𝐻._𝐶𝐷) = (𝐻 + (_𝐶𝐷 / ;10)) |
| 19 | 9, 18 | oveq12i 7365 | . 2 ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = ((𝐺 + (_𝐴𝐵 / ;10)) + (𝐻 + (_𝐶𝐷 / ;10))) |
| 20 | 1 | nn0cni 12414 | . . 3 ⊢ 𝐺 ∈ ℂ |
| 21 | 8 | recni 11148 | . . . 4 ⊢ _𝐴𝐵 ∈ ℂ |
| 22 | 10nn 12625 | . . . . 5 ⊢ ;10 ∈ ℕ | |
| 23 | 22 | nncni 12156 | . . . 4 ⊢ ;10 ∈ ℂ |
| 24 | 22 | nnne0i 12186 | . . . 4 ⊢ ;10 ≠ 0 |
| 25 | 21, 23, 24 | divcli 11884 | . . 3 ⊢ (_𝐴𝐵 / ;10) ∈ ℂ |
| 26 | 10 | nn0cni 12414 | . . 3 ⊢ 𝐻 ∈ ℂ |
| 27 | 17 | recni 11148 | . . . 4 ⊢ _𝐶𝐷 ∈ ℂ |
| 28 | 27, 23, 24 | divcli 11884 | . . 3 ⊢ (_𝐶𝐷 / ;10) ∈ ℂ |
| 29 | 20, 25, 26, 28 | add4i 11359 | . 2 ⊢ ((𝐺 + (_𝐴𝐵 / ;10)) + (𝐻 + (_𝐶𝐷 / ;10))) = ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) |
| 30 | dpadd2.i | . . . 4 ⊢ (𝐺 + 𝐻) = 𝐼 | |
| 31 | 21, 27, 23, 24 | divdiri 11899 | . . . . 5 ⊢ ((_𝐴𝐵 + _𝐶𝐷) / ;10) = ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10)) |
| 32 | dpadd2.1 | . . . . . . 7 ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) | |
| 33 | dpval 32843 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) | |
| 34 | 2, 6, 33 | mp2an 692 | . . . . . . . 8 ⊢ (𝐴.𝐵) = _𝐴𝐵 |
| 35 | dpval 32843 | . . . . . . . . 9 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ) → (𝐶.𝐷) = _𝐶𝐷) | |
| 36 | 11, 15, 35 | mp2an 692 | . . . . . . . 8 ⊢ (𝐶.𝐷) = _𝐶𝐷 |
| 37 | 34, 36 | oveq12i 7365 | . . . . . . 7 ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (_𝐴𝐵 + _𝐶𝐷) |
| 38 | dpadd2.e | . . . . . . . 8 ⊢ 𝐸 ∈ ℕ0 | |
| 39 | dpadd2.f | . . . . . . . . 9 ⊢ 𝐹 ∈ ℝ+ | |
| 40 | rpre 12920 | . . . . . . . . 9 ⊢ (𝐹 ∈ ℝ+ → 𝐹 ∈ ℝ) | |
| 41 | 39, 40 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐹 ∈ ℝ |
| 42 | dpval 32843 | . . . . . . . 8 ⊢ ((𝐸 ∈ ℕ0 ∧ 𝐹 ∈ ℝ) → (𝐸.𝐹) = _𝐸𝐹) | |
| 43 | 38, 41, 42 | mp2an 692 | . . . . . . 7 ⊢ (𝐸.𝐹) = _𝐸𝐹 |
| 44 | 32, 37, 43 | 3eqtr3i 2760 | . . . . . 6 ⊢ (_𝐴𝐵 + _𝐶𝐷) = _𝐸𝐹 |
| 45 | 44 | oveq1i 7363 | . . . . 5 ⊢ ((_𝐴𝐵 + _𝐶𝐷) / ;10) = (_𝐸𝐹 / ;10) |
| 46 | 31, 45 | eqtr3i 2754 | . . . 4 ⊢ ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10)) = (_𝐸𝐹 / ;10) |
| 47 | 30, 46 | oveq12i 7365 | . . 3 ⊢ ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) = (𝐼 + (_𝐸𝐹 / ;10)) |
| 48 | 1, 10 | nn0addcli 12439 | . . . . 5 ⊢ (𝐺 + 𝐻) ∈ ℕ0 |
| 49 | 30, 48 | eqeltrri 2825 | . . . 4 ⊢ 𝐼 ∈ ℕ0 |
| 50 | 38 | nn0rei 12413 | . . . . 5 ⊢ 𝐸 ∈ ℝ |
| 51 | dp2cl 32833 | . . . . 5 ⊢ ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → _𝐸𝐹 ∈ ℝ) | |
| 52 | 50, 41, 51 | mp2an 692 | . . . 4 ⊢ _𝐸𝐹 ∈ ℝ |
| 53 | 49, 52 | dpval2 32846 | . . 3 ⊢ (𝐼._𝐸𝐹) = (𝐼 + (_𝐸𝐹 / ;10)) |
| 54 | 47, 53 | eqtr4i 2755 | . 2 ⊢ ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) = (𝐼._𝐸𝐹) |
| 55 | 19, 29, 54 | 3eqtri 2756 | 1 ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = (𝐼._𝐸𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 / cdiv 11795 ℕ0cn0 12402 ;cdc 12609 ℝ+crp 12911 _cdp2 32824 .cdp 32841 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-dec 12610 df-rp 12912 df-dp2 32825 df-dp 32842 |
| This theorem is referenced by: hgt750lemd 34618 |
| Copyright terms: Public domain | W3C validator |