Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpadd2 | Structured version Visualization version GIF version |
Description: Addition with one decimal, no carry. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
Ref | Expression |
---|---|
dpadd2.a | ⊢ 𝐴 ∈ ℕ0 |
dpadd2.b | ⊢ 𝐵 ∈ ℝ+ |
dpadd2.c | ⊢ 𝐶 ∈ ℕ0 |
dpadd2.d | ⊢ 𝐷 ∈ ℝ+ |
dpadd2.e | ⊢ 𝐸 ∈ ℕ0 |
dpadd2.f | ⊢ 𝐹 ∈ ℝ+ |
dpadd2.g | ⊢ 𝐺 ∈ ℕ0 |
dpadd2.h | ⊢ 𝐻 ∈ ℕ0 |
dpadd2.i | ⊢ (𝐺 + 𝐻) = 𝐼 |
dpadd2.1 | ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) |
Ref | Expression |
---|---|
dpadd2 | ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = (𝐼._𝐸𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpadd2.g | . . . 4 ⊢ 𝐺 ∈ ℕ0 | |
2 | dpadd2.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
3 | 2 | nn0rei 12244 | . . . . 5 ⊢ 𝐴 ∈ ℝ |
4 | dpadd2.b | . . . . . 6 ⊢ 𝐵 ∈ ℝ+ | |
5 | rpre 12738 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
7 | dp2cl 31154 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → _𝐴𝐵 ∈ ℝ) | |
8 | 3, 6, 7 | mp2an 689 | . . . 4 ⊢ _𝐴𝐵 ∈ ℝ |
9 | 1, 8 | dpval2 31167 | . . 3 ⊢ (𝐺._𝐴𝐵) = (𝐺 + (_𝐴𝐵 / ;10)) |
10 | dpadd2.h | . . . 4 ⊢ 𝐻 ∈ ℕ0 | |
11 | dpadd2.c | . . . . . 6 ⊢ 𝐶 ∈ ℕ0 | |
12 | 11 | nn0rei 12244 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
13 | dpadd2.d | . . . . . 6 ⊢ 𝐷 ∈ ℝ+ | |
14 | rpre 12738 | . . . . . 6 ⊢ (𝐷 ∈ ℝ+ → 𝐷 ∈ ℝ) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 𝐷 ∈ ℝ |
16 | dp2cl 31154 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → _𝐶𝐷 ∈ ℝ) | |
17 | 12, 15, 16 | mp2an 689 | . . . 4 ⊢ _𝐶𝐷 ∈ ℝ |
18 | 10, 17 | dpval2 31167 | . . 3 ⊢ (𝐻._𝐶𝐷) = (𝐻 + (_𝐶𝐷 / ;10)) |
19 | 9, 18 | oveq12i 7287 | . 2 ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = ((𝐺 + (_𝐴𝐵 / ;10)) + (𝐻 + (_𝐶𝐷 / ;10))) |
20 | 1 | nn0cni 12245 | . . 3 ⊢ 𝐺 ∈ ℂ |
21 | 8 | recni 10989 | . . . 4 ⊢ _𝐴𝐵 ∈ ℂ |
22 | 10nn 12453 | . . . . 5 ⊢ ;10 ∈ ℕ | |
23 | 22 | nncni 11983 | . . . 4 ⊢ ;10 ∈ ℂ |
24 | 22 | nnne0i 12013 | . . . 4 ⊢ ;10 ≠ 0 |
25 | 21, 23, 24 | divcli 11717 | . . 3 ⊢ (_𝐴𝐵 / ;10) ∈ ℂ |
26 | 10 | nn0cni 12245 | . . 3 ⊢ 𝐻 ∈ ℂ |
27 | 17 | recni 10989 | . . . 4 ⊢ _𝐶𝐷 ∈ ℂ |
28 | 27, 23, 24 | divcli 11717 | . . 3 ⊢ (_𝐶𝐷 / ;10) ∈ ℂ |
29 | 20, 25, 26, 28 | add4i 11199 | . 2 ⊢ ((𝐺 + (_𝐴𝐵 / ;10)) + (𝐻 + (_𝐶𝐷 / ;10))) = ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) |
30 | dpadd2.i | . . . 4 ⊢ (𝐺 + 𝐻) = 𝐼 | |
31 | 21, 27, 23, 24 | divdiri 11732 | . . . . 5 ⊢ ((_𝐴𝐵 + _𝐶𝐷) / ;10) = ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10)) |
32 | dpadd2.1 | . . . . . . 7 ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) | |
33 | dpval 31164 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) | |
34 | 2, 6, 33 | mp2an 689 | . . . . . . . 8 ⊢ (𝐴.𝐵) = _𝐴𝐵 |
35 | dpval 31164 | . . . . . . . . 9 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ) → (𝐶.𝐷) = _𝐶𝐷) | |
36 | 11, 15, 35 | mp2an 689 | . . . . . . . 8 ⊢ (𝐶.𝐷) = _𝐶𝐷 |
37 | 34, 36 | oveq12i 7287 | . . . . . . 7 ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (_𝐴𝐵 + _𝐶𝐷) |
38 | dpadd2.e | . . . . . . . 8 ⊢ 𝐸 ∈ ℕ0 | |
39 | dpadd2.f | . . . . . . . . 9 ⊢ 𝐹 ∈ ℝ+ | |
40 | rpre 12738 | . . . . . . . . 9 ⊢ (𝐹 ∈ ℝ+ → 𝐹 ∈ ℝ) | |
41 | 39, 40 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐹 ∈ ℝ |
42 | dpval 31164 | . . . . . . . 8 ⊢ ((𝐸 ∈ ℕ0 ∧ 𝐹 ∈ ℝ) → (𝐸.𝐹) = _𝐸𝐹) | |
43 | 38, 41, 42 | mp2an 689 | . . . . . . 7 ⊢ (𝐸.𝐹) = _𝐸𝐹 |
44 | 32, 37, 43 | 3eqtr3i 2774 | . . . . . 6 ⊢ (_𝐴𝐵 + _𝐶𝐷) = _𝐸𝐹 |
45 | 44 | oveq1i 7285 | . . . . 5 ⊢ ((_𝐴𝐵 + _𝐶𝐷) / ;10) = (_𝐸𝐹 / ;10) |
46 | 31, 45 | eqtr3i 2768 | . . . 4 ⊢ ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10)) = (_𝐸𝐹 / ;10) |
47 | 30, 46 | oveq12i 7287 | . . 3 ⊢ ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) = (𝐼 + (_𝐸𝐹 / ;10)) |
48 | 1, 10 | nn0addcli 12270 | . . . . 5 ⊢ (𝐺 + 𝐻) ∈ ℕ0 |
49 | 30, 48 | eqeltrri 2836 | . . . 4 ⊢ 𝐼 ∈ ℕ0 |
50 | 38 | nn0rei 12244 | . . . . 5 ⊢ 𝐸 ∈ ℝ |
51 | dp2cl 31154 | . . . . 5 ⊢ ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → _𝐸𝐹 ∈ ℝ) | |
52 | 50, 41, 51 | mp2an 689 | . . . 4 ⊢ _𝐸𝐹 ∈ ℝ |
53 | 49, 52 | dpval2 31167 | . . 3 ⊢ (𝐼._𝐸𝐹) = (𝐼 + (_𝐸𝐹 / ;10)) |
54 | 47, 53 | eqtr4i 2769 | . 2 ⊢ ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) = (𝐼._𝐸𝐹) |
55 | 19, 29, 54 | 3eqtri 2770 | 1 ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = (𝐼._𝐸𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 / cdiv 11632 ℕ0cn0 12233 ;cdc 12437 ℝ+crp 12730 _cdp2 31145 .cdp 31162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-dec 12438 df-rp 12731 df-dp2 31146 df-dp 31163 |
This theorem is referenced by: hgt750lemd 32628 |
Copyright terms: Public domain | W3C validator |