Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpadd2 Structured version   Visualization version   GIF version

Theorem dpadd2 32076
Description: Addition with one decimal, no carry. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Hypotheses
Ref Expression
dpadd2.a 𝐴 ∈ ℕ0
dpadd2.b 𝐵 ∈ ℝ+
dpadd2.c 𝐶 ∈ ℕ0
dpadd2.d 𝐷 ∈ ℝ+
dpadd2.e 𝐸 ∈ ℕ0
dpadd2.f 𝐹 ∈ ℝ+
dpadd2.g 𝐺 ∈ ℕ0
dpadd2.h 𝐻 ∈ ℕ0
dpadd2.i (𝐺 + 𝐻) = 𝐼
dpadd2.1 ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹)
Assertion
Ref Expression
dpadd2 ((𝐺.𝐴𝐵) + (𝐻.𝐶𝐷)) = (𝐼.𝐸𝐹)

Proof of Theorem dpadd2
StepHypRef Expression
1 dpadd2.g . . . 4 𝐺 ∈ ℕ0
2 dpadd2.a . . . . . 6 𝐴 ∈ ℕ0
32nn0rei 12483 . . . . 5 𝐴 ∈ ℝ
4 dpadd2.b . . . . . 6 𝐵 ∈ ℝ+
5 rpre 12982 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
64, 5ax-mp 5 . . . . 5 𝐵 ∈ ℝ
7 dp2cl 32046 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴𝐵 ∈ ℝ)
83, 6, 7mp2an 691 . . . 4 𝐴𝐵 ∈ ℝ
91, 8dpval2 32059 . . 3 (𝐺.𝐴𝐵) = (𝐺 + (𝐴𝐵 / 10))
10 dpadd2.h . . . 4 𝐻 ∈ ℕ0
11 dpadd2.c . . . . . 6 𝐶 ∈ ℕ0
1211nn0rei 12483 . . . . 5 𝐶 ∈ ℝ
13 dpadd2.d . . . . . 6 𝐷 ∈ ℝ+
14 rpre 12982 . . . . . 6 (𝐷 ∈ ℝ+𝐷 ∈ ℝ)
1513, 14ax-mp 5 . . . . 5 𝐷 ∈ ℝ
16 dp2cl 32046 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → 𝐶𝐷 ∈ ℝ)
1712, 15, 16mp2an 691 . . . 4 𝐶𝐷 ∈ ℝ
1810, 17dpval2 32059 . . 3 (𝐻.𝐶𝐷) = (𝐻 + (𝐶𝐷 / 10))
199, 18oveq12i 7421 . 2 ((𝐺.𝐴𝐵) + (𝐻.𝐶𝐷)) = ((𝐺 + (𝐴𝐵 / 10)) + (𝐻 + (𝐶𝐷 / 10)))
201nn0cni 12484 . . 3 𝐺 ∈ ℂ
218recni 11228 . . . 4 𝐴𝐵 ∈ ℂ
22 10nn 12693 . . . . 5 10 ∈ ℕ
2322nncni 12222 . . . 4 10 ∈ ℂ
2422nnne0i 12252 . . . 4 10 ≠ 0
2521, 23, 24divcli 11956 . . 3 (𝐴𝐵 / 10) ∈ ℂ
2610nn0cni 12484 . . 3 𝐻 ∈ ℂ
2717recni 11228 . . . 4 𝐶𝐷 ∈ ℂ
2827, 23, 24divcli 11956 . . 3 (𝐶𝐷 / 10) ∈ ℂ
2920, 25, 26, 28add4i 11438 . 2 ((𝐺 + (𝐴𝐵 / 10)) + (𝐻 + (𝐶𝐷 / 10))) = ((𝐺 + 𝐻) + ((𝐴𝐵 / 10) + (𝐶𝐷 / 10)))
30 dpadd2.i . . . 4 (𝐺 + 𝐻) = 𝐼
3121, 27, 23, 24divdiri 11971 . . . . 5 ((𝐴𝐵 + 𝐶𝐷) / 10) = ((𝐴𝐵 / 10) + (𝐶𝐷 / 10))
32 dpadd2.1 . . . . . . 7 ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹)
33 dpval 32056 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)
342, 6, 33mp2an 691 . . . . . . . 8 (𝐴.𝐵) = 𝐴𝐵
35 dpval 32056 . . . . . . . . 9 ((𝐶 ∈ ℕ0𝐷 ∈ ℝ) → (𝐶.𝐷) = 𝐶𝐷)
3611, 15, 35mp2an 691 . . . . . . . 8 (𝐶.𝐷) = 𝐶𝐷
3734, 36oveq12i 7421 . . . . . . 7 ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐴𝐵 + 𝐶𝐷)
38 dpadd2.e . . . . . . . 8 𝐸 ∈ ℕ0
39 dpadd2.f . . . . . . . . 9 𝐹 ∈ ℝ+
40 rpre 12982 . . . . . . . . 9 (𝐹 ∈ ℝ+𝐹 ∈ ℝ)
4139, 40ax-mp 5 . . . . . . . 8 𝐹 ∈ ℝ
42 dpval 32056 . . . . . . . 8 ((𝐸 ∈ ℕ0𝐹 ∈ ℝ) → (𝐸.𝐹) = 𝐸𝐹)
4338, 41, 42mp2an 691 . . . . . . 7 (𝐸.𝐹) = 𝐸𝐹
4432, 37, 433eqtr3i 2769 . . . . . 6 (𝐴𝐵 + 𝐶𝐷) = 𝐸𝐹
4544oveq1i 7419 . . . . 5 ((𝐴𝐵 + 𝐶𝐷) / 10) = (𝐸𝐹 / 10)
4631, 45eqtr3i 2763 . . . 4 ((𝐴𝐵 / 10) + (𝐶𝐷 / 10)) = (𝐸𝐹 / 10)
4730, 46oveq12i 7421 . . 3 ((𝐺 + 𝐻) + ((𝐴𝐵 / 10) + (𝐶𝐷 / 10))) = (𝐼 + (𝐸𝐹 / 10))
481, 10nn0addcli 12509 . . . . 5 (𝐺 + 𝐻) ∈ ℕ0
4930, 48eqeltrri 2831 . . . 4 𝐼 ∈ ℕ0
5038nn0rei 12483 . . . . 5 𝐸 ∈ ℝ
51 dp2cl 32046 . . . . 5 ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → 𝐸𝐹 ∈ ℝ)
5250, 41, 51mp2an 691 . . . 4 𝐸𝐹 ∈ ℝ
5349, 52dpval2 32059 . . 3 (𝐼.𝐸𝐹) = (𝐼 + (𝐸𝐹 / 10))
5447, 53eqtr4i 2764 . 2 ((𝐺 + 𝐻) + ((𝐴𝐵 / 10) + (𝐶𝐷 / 10))) = (𝐼.𝐸𝐹)
5519, 29, 543eqtri 2765 1 ((𝐺.𝐴𝐵) + (𝐻.𝐶𝐷)) = (𝐼.𝐸𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  (class class class)co 7409  cr 11109  0cc0 11110  1c1 11111   + caddc 11113   / cdiv 11871  0cn0 12472  cdc 12677  +crp 12974  cdp2 32037  .cdp 32054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-dec 12678  df-rp 12975  df-dp2 32038  df-dp 32055
This theorem is referenced by:  hgt750lemd  33660
  Copyright terms: Public domain W3C validator