Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpadd2 | Structured version Visualization version GIF version |
Description: Addition with one decimal, no carry. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
Ref | Expression |
---|---|
dpadd2.a | ⊢ 𝐴 ∈ ℕ0 |
dpadd2.b | ⊢ 𝐵 ∈ ℝ+ |
dpadd2.c | ⊢ 𝐶 ∈ ℕ0 |
dpadd2.d | ⊢ 𝐷 ∈ ℝ+ |
dpadd2.e | ⊢ 𝐸 ∈ ℕ0 |
dpadd2.f | ⊢ 𝐹 ∈ ℝ+ |
dpadd2.g | ⊢ 𝐺 ∈ ℕ0 |
dpadd2.h | ⊢ 𝐻 ∈ ℕ0 |
dpadd2.i | ⊢ (𝐺 + 𝐻) = 𝐼 |
dpadd2.1 | ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) |
Ref | Expression |
---|---|
dpadd2 | ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = (𝐼._𝐸𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpadd2.g | . . . 4 ⊢ 𝐺 ∈ ℕ0 | |
2 | dpadd2.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
3 | 2 | nn0rei 11959 | . . . . 5 ⊢ 𝐴 ∈ ℝ |
4 | dpadd2.b | . . . . . 6 ⊢ 𝐵 ∈ ℝ+ | |
5 | rpre 12452 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
7 | dp2cl 30692 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → _𝐴𝐵 ∈ ℝ) | |
8 | 3, 6, 7 | mp2an 691 | . . . 4 ⊢ _𝐴𝐵 ∈ ℝ |
9 | 1, 8 | dpval2 30705 | . . 3 ⊢ (𝐺._𝐴𝐵) = (𝐺 + (_𝐴𝐵 / ;10)) |
10 | dpadd2.h | . . . 4 ⊢ 𝐻 ∈ ℕ0 | |
11 | dpadd2.c | . . . . . 6 ⊢ 𝐶 ∈ ℕ0 | |
12 | 11 | nn0rei 11959 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
13 | dpadd2.d | . . . . . 6 ⊢ 𝐷 ∈ ℝ+ | |
14 | rpre 12452 | . . . . . 6 ⊢ (𝐷 ∈ ℝ+ → 𝐷 ∈ ℝ) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 𝐷 ∈ ℝ |
16 | dp2cl 30692 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → _𝐶𝐷 ∈ ℝ) | |
17 | 12, 15, 16 | mp2an 691 | . . . 4 ⊢ _𝐶𝐷 ∈ ℝ |
18 | 10, 17 | dpval2 30705 | . . 3 ⊢ (𝐻._𝐶𝐷) = (𝐻 + (_𝐶𝐷 / ;10)) |
19 | 9, 18 | oveq12i 7169 | . 2 ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = ((𝐺 + (_𝐴𝐵 / ;10)) + (𝐻 + (_𝐶𝐷 / ;10))) |
20 | 1 | nn0cni 11960 | . . 3 ⊢ 𝐺 ∈ ℂ |
21 | 8 | recni 10707 | . . . 4 ⊢ _𝐴𝐵 ∈ ℂ |
22 | 10nn 12167 | . . . . 5 ⊢ ;10 ∈ ℕ | |
23 | 22 | nncni 11698 | . . . 4 ⊢ ;10 ∈ ℂ |
24 | 22 | nnne0i 11728 | . . . 4 ⊢ ;10 ≠ 0 |
25 | 21, 23, 24 | divcli 11434 | . . 3 ⊢ (_𝐴𝐵 / ;10) ∈ ℂ |
26 | 10 | nn0cni 11960 | . . 3 ⊢ 𝐻 ∈ ℂ |
27 | 17 | recni 10707 | . . . 4 ⊢ _𝐶𝐷 ∈ ℂ |
28 | 27, 23, 24 | divcli 11434 | . . 3 ⊢ (_𝐶𝐷 / ;10) ∈ ℂ |
29 | 20, 25, 26, 28 | add4i 10916 | . 2 ⊢ ((𝐺 + (_𝐴𝐵 / ;10)) + (𝐻 + (_𝐶𝐷 / ;10))) = ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) |
30 | dpadd2.i | . . . 4 ⊢ (𝐺 + 𝐻) = 𝐼 | |
31 | 21, 27, 23, 24 | divdiri 11449 | . . . . 5 ⊢ ((_𝐴𝐵 + _𝐶𝐷) / ;10) = ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10)) |
32 | dpadd2.1 | . . . . . . 7 ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) | |
33 | dpval 30702 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) | |
34 | 2, 6, 33 | mp2an 691 | . . . . . . . 8 ⊢ (𝐴.𝐵) = _𝐴𝐵 |
35 | dpval 30702 | . . . . . . . . 9 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ) → (𝐶.𝐷) = _𝐶𝐷) | |
36 | 11, 15, 35 | mp2an 691 | . . . . . . . 8 ⊢ (𝐶.𝐷) = _𝐶𝐷 |
37 | 34, 36 | oveq12i 7169 | . . . . . . 7 ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (_𝐴𝐵 + _𝐶𝐷) |
38 | dpadd2.e | . . . . . . . 8 ⊢ 𝐸 ∈ ℕ0 | |
39 | dpadd2.f | . . . . . . . . 9 ⊢ 𝐹 ∈ ℝ+ | |
40 | rpre 12452 | . . . . . . . . 9 ⊢ (𝐹 ∈ ℝ+ → 𝐹 ∈ ℝ) | |
41 | 39, 40 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐹 ∈ ℝ |
42 | dpval 30702 | . . . . . . . 8 ⊢ ((𝐸 ∈ ℕ0 ∧ 𝐹 ∈ ℝ) → (𝐸.𝐹) = _𝐸𝐹) | |
43 | 38, 41, 42 | mp2an 691 | . . . . . . 7 ⊢ (𝐸.𝐹) = _𝐸𝐹 |
44 | 32, 37, 43 | 3eqtr3i 2790 | . . . . . 6 ⊢ (_𝐴𝐵 + _𝐶𝐷) = _𝐸𝐹 |
45 | 44 | oveq1i 7167 | . . . . 5 ⊢ ((_𝐴𝐵 + _𝐶𝐷) / ;10) = (_𝐸𝐹 / ;10) |
46 | 31, 45 | eqtr3i 2784 | . . . 4 ⊢ ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10)) = (_𝐸𝐹 / ;10) |
47 | 30, 46 | oveq12i 7169 | . . 3 ⊢ ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) = (𝐼 + (_𝐸𝐹 / ;10)) |
48 | 1, 10 | nn0addcli 11985 | . . . . 5 ⊢ (𝐺 + 𝐻) ∈ ℕ0 |
49 | 30, 48 | eqeltrri 2850 | . . . 4 ⊢ 𝐼 ∈ ℕ0 |
50 | 38 | nn0rei 11959 | . . . . 5 ⊢ 𝐸 ∈ ℝ |
51 | dp2cl 30692 | . . . . 5 ⊢ ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → _𝐸𝐹 ∈ ℝ) | |
52 | 50, 41, 51 | mp2an 691 | . . . 4 ⊢ _𝐸𝐹 ∈ ℝ |
53 | 49, 52 | dpval2 30705 | . . 3 ⊢ (𝐼._𝐸𝐹) = (𝐼 + (_𝐸𝐹 / ;10)) |
54 | 47, 53 | eqtr4i 2785 | . 2 ⊢ ((𝐺 + 𝐻) + ((_𝐴𝐵 / ;10) + (_𝐶𝐷 / ;10))) = (𝐼._𝐸𝐹) |
55 | 19, 29, 54 | 3eqtri 2786 | 1 ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = (𝐼._𝐸𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 (class class class)co 7157 ℝcr 10588 0cc0 10589 1c1 10590 + caddc 10592 / cdiv 11349 ℕ0cn0 11948 ;cdc 12151 ℝ+crp 12444 _cdp2 30683 .cdp 30700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-5 11754 df-6 11755 df-7 11756 df-8 11757 df-9 11758 df-n0 11949 df-dec 12152 df-rp 12445 df-dp2 30684 df-dp 30701 |
This theorem is referenced by: hgt750lemd 32161 |
Copyright terms: Public domain | W3C validator |