Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpadd2 Structured version   Visualization version   GIF version

Theorem dpadd2 31184
Description: Addition with one decimal, no carry. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Hypotheses
Ref Expression
dpadd2.a 𝐴 ∈ ℕ0
dpadd2.b 𝐵 ∈ ℝ+
dpadd2.c 𝐶 ∈ ℕ0
dpadd2.d 𝐷 ∈ ℝ+
dpadd2.e 𝐸 ∈ ℕ0
dpadd2.f 𝐹 ∈ ℝ+
dpadd2.g 𝐺 ∈ ℕ0
dpadd2.h 𝐻 ∈ ℕ0
dpadd2.i (𝐺 + 𝐻) = 𝐼
dpadd2.1 ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹)
Assertion
Ref Expression
dpadd2 ((𝐺.𝐴𝐵) + (𝐻.𝐶𝐷)) = (𝐼.𝐸𝐹)

Proof of Theorem dpadd2
StepHypRef Expression
1 dpadd2.g . . . 4 𝐺 ∈ ℕ0
2 dpadd2.a . . . . . 6 𝐴 ∈ ℕ0
32nn0rei 12244 . . . . 5 𝐴 ∈ ℝ
4 dpadd2.b . . . . . 6 𝐵 ∈ ℝ+
5 rpre 12738 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
64, 5ax-mp 5 . . . . 5 𝐵 ∈ ℝ
7 dp2cl 31154 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴𝐵 ∈ ℝ)
83, 6, 7mp2an 689 . . . 4 𝐴𝐵 ∈ ℝ
91, 8dpval2 31167 . . 3 (𝐺.𝐴𝐵) = (𝐺 + (𝐴𝐵 / 10))
10 dpadd2.h . . . 4 𝐻 ∈ ℕ0
11 dpadd2.c . . . . . 6 𝐶 ∈ ℕ0
1211nn0rei 12244 . . . . 5 𝐶 ∈ ℝ
13 dpadd2.d . . . . . 6 𝐷 ∈ ℝ+
14 rpre 12738 . . . . . 6 (𝐷 ∈ ℝ+𝐷 ∈ ℝ)
1513, 14ax-mp 5 . . . . 5 𝐷 ∈ ℝ
16 dp2cl 31154 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → 𝐶𝐷 ∈ ℝ)
1712, 15, 16mp2an 689 . . . 4 𝐶𝐷 ∈ ℝ
1810, 17dpval2 31167 . . 3 (𝐻.𝐶𝐷) = (𝐻 + (𝐶𝐷 / 10))
199, 18oveq12i 7287 . 2 ((𝐺.𝐴𝐵) + (𝐻.𝐶𝐷)) = ((𝐺 + (𝐴𝐵 / 10)) + (𝐻 + (𝐶𝐷 / 10)))
201nn0cni 12245 . . 3 𝐺 ∈ ℂ
218recni 10989 . . . 4 𝐴𝐵 ∈ ℂ
22 10nn 12453 . . . . 5 10 ∈ ℕ
2322nncni 11983 . . . 4 10 ∈ ℂ
2422nnne0i 12013 . . . 4 10 ≠ 0
2521, 23, 24divcli 11717 . . 3 (𝐴𝐵 / 10) ∈ ℂ
2610nn0cni 12245 . . 3 𝐻 ∈ ℂ
2717recni 10989 . . . 4 𝐶𝐷 ∈ ℂ
2827, 23, 24divcli 11717 . . 3 (𝐶𝐷 / 10) ∈ ℂ
2920, 25, 26, 28add4i 11199 . 2 ((𝐺 + (𝐴𝐵 / 10)) + (𝐻 + (𝐶𝐷 / 10))) = ((𝐺 + 𝐻) + ((𝐴𝐵 / 10) + (𝐶𝐷 / 10)))
30 dpadd2.i . . . 4 (𝐺 + 𝐻) = 𝐼
3121, 27, 23, 24divdiri 11732 . . . . 5 ((𝐴𝐵 + 𝐶𝐷) / 10) = ((𝐴𝐵 / 10) + (𝐶𝐷 / 10))
32 dpadd2.1 . . . . . . 7 ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹)
33 dpval 31164 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)
342, 6, 33mp2an 689 . . . . . . . 8 (𝐴.𝐵) = 𝐴𝐵
35 dpval 31164 . . . . . . . . 9 ((𝐶 ∈ ℕ0𝐷 ∈ ℝ) → (𝐶.𝐷) = 𝐶𝐷)
3611, 15, 35mp2an 689 . . . . . . . 8 (𝐶.𝐷) = 𝐶𝐷
3734, 36oveq12i 7287 . . . . . . 7 ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐴𝐵 + 𝐶𝐷)
38 dpadd2.e . . . . . . . 8 𝐸 ∈ ℕ0
39 dpadd2.f . . . . . . . . 9 𝐹 ∈ ℝ+
40 rpre 12738 . . . . . . . . 9 (𝐹 ∈ ℝ+𝐹 ∈ ℝ)
4139, 40ax-mp 5 . . . . . . . 8 𝐹 ∈ ℝ
42 dpval 31164 . . . . . . . 8 ((𝐸 ∈ ℕ0𝐹 ∈ ℝ) → (𝐸.𝐹) = 𝐸𝐹)
4338, 41, 42mp2an 689 . . . . . . 7 (𝐸.𝐹) = 𝐸𝐹
4432, 37, 433eqtr3i 2774 . . . . . 6 (𝐴𝐵 + 𝐶𝐷) = 𝐸𝐹
4544oveq1i 7285 . . . . 5 ((𝐴𝐵 + 𝐶𝐷) / 10) = (𝐸𝐹 / 10)
4631, 45eqtr3i 2768 . . . 4 ((𝐴𝐵 / 10) + (𝐶𝐷 / 10)) = (𝐸𝐹 / 10)
4730, 46oveq12i 7287 . . 3 ((𝐺 + 𝐻) + ((𝐴𝐵 / 10) + (𝐶𝐷 / 10))) = (𝐼 + (𝐸𝐹 / 10))
481, 10nn0addcli 12270 . . . . 5 (𝐺 + 𝐻) ∈ ℕ0
4930, 48eqeltrri 2836 . . . 4 𝐼 ∈ ℕ0
5038nn0rei 12244 . . . . 5 𝐸 ∈ ℝ
51 dp2cl 31154 . . . . 5 ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → 𝐸𝐹 ∈ ℝ)
5250, 41, 51mp2an 689 . . . 4 𝐸𝐹 ∈ ℝ
5349, 52dpval2 31167 . . 3 (𝐼.𝐸𝐹) = (𝐼 + (𝐸𝐹 / 10))
5447, 53eqtr4i 2769 . 2 ((𝐺 + 𝐻) + ((𝐴𝐵 / 10) + (𝐶𝐷 / 10))) = (𝐼.𝐸𝐹)
5519, 29, 543eqtri 2770 1 ((𝐺.𝐴𝐵) + (𝐻.𝐶𝐷)) = (𝐼.𝐸𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   / cdiv 11632  0cn0 12233  cdc 12437  +crp 12730  cdp2 31145  .cdp 31162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-dec 12438  df-rp 12731  df-dp2 31146  df-dp 31163
This theorem is referenced by:  hgt750lemd  32628
  Copyright terms: Public domain W3C validator