Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopN Structured version   Visualization version   GIF version

Theorem dvhopN 39126
Description: Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace 𝐸. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by ⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩, 𝑈, 𝐹, 𝑂. We swapped the order of vector sum (their juxtaposition i.e. composition) to show 𝐹, 𝑂 first. Note that 𝑂 and ( I ↾ 𝑇) are the zero and one of the division ring 𝐸, and ( I ↾ 𝐵) is the zero of the translation group. 𝑆 is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvhop.b 𝐵 = (Base‘𝐾)
dvhop.h 𝐻 = (LHyp‘𝐾)
dvhop.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhop.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhop.p 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))
dvhop.a 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓)𝑃(2nd𝑔))⟩)
dvhop.s 𝑆 = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
dvhop.o 𝑂 = (𝑐𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dvhopN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨𝐹, 𝑈⟩ = (⟨𝐹, 𝑂𝐴(𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩)))
Distinct variable groups:   𝐵,𝑐   𝑎,𝑏,𝑓,𝑔,𝑠,𝐸   𝐻,𝑐   𝐾,𝑐   𝑃,𝑓,𝑔   𝑎,𝑐,𝑇,𝑏,𝑓,𝑔,𝑠   𝑊,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝐵(𝑓,𝑔,𝑠,𝑎,𝑏)   𝑃(𝑠,𝑎,𝑏,𝑐)   𝑆(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝑈(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝐸(𝑐)   𝐹(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝐻(𝑓,𝑔,𝑠,𝑎,𝑏)   𝐾(𝑓,𝑔,𝑠,𝑎,𝑏)   𝑂(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝑊(𝑓,𝑔,𝑠)

Proof of Theorem dvhopN
StepHypRef Expression
1 simprr 770 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝑈𝐸)
2 dvhop.b . . . . . . 7 𝐵 = (Base‘𝐾)
3 dvhop.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
4 dvhop.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4idltrn 38160 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
65adantr 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ( I ↾ 𝐵) ∈ 𝑇)
7 dvhop.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
83, 4, 7tendoidcl 38779 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
98adantr 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ( I ↾ 𝑇) ∈ 𝐸)
10 dvhop.s . . . . . 6 𝑆 = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
1110dvhopspN 39125 . . . . 5 ((𝑈𝐸 ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩) = ⟨(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))⟩)
121, 6, 9, 11syl12anc 834 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩) = ⟨(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))⟩)
132, 3, 7tendoid 38783 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
1413adantrl 713 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
153, 4, 7tendo1mulr 38781 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈)
1615adantrl 713 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈)
1714, 16opeq12d 4818 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))⟩ = ⟨( I ↾ 𝐵), 𝑈⟩)
1812, 17eqtrd 2780 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩) = ⟨( I ↾ 𝐵), 𝑈⟩)
1918oveq2d 7287 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (⟨𝐹, 𝑂𝐴(𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩)) = (⟨𝐹, 𝑂𝐴⟨( I ↾ 𝐵), 𝑈⟩))
20 simprl 768 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝐹𝑇)
21 dvhop.o . . . . 5 𝑂 = (𝑐𝑇 ↦ ( I ↾ 𝐵))
222, 3, 4, 7, 21tendo0cl 38800 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
2322adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝑂𝐸)
24 dvhop.a . . . 4 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓)𝑃(2nd𝑔))⟩)
2524dvhopaddN 39124 . . 3 (((𝐹𝑇𝑂𝐸) ∧ (( I ↾ 𝐵) ∈ 𝑇𝑈𝐸)) → (⟨𝐹, 𝑂𝐴⟨( I ↾ 𝐵), 𝑈⟩) = ⟨(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)⟩)
2620, 23, 6, 1, 25syl22anc 836 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (⟨𝐹, 𝑂𝐴⟨( I ↾ 𝐵), 𝑈⟩) = ⟨(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)⟩)
272, 3, 4ltrn1o 38134 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
2827adantrr 714 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝐹:𝐵1-1-onto𝐵)
29 f1of 6714 . . . 4 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
30 fcoi1 6646 . . . 4 (𝐹:𝐵𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
3128, 29, 303syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
32 dvhop.p . . . . 5 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))
332, 3, 4, 7, 21, 32tendo0pl 38801 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑂𝑃𝑈) = 𝑈)
3433adantrl 713 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑂𝑃𝑈) = 𝑈)
3531, 34opeq12d 4818 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)⟩ = ⟨𝐹, 𝑈⟩)
3619, 26, 353eqtrrd 2785 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨𝐹, 𝑈⟩ = (⟨𝐹, 𝑂𝐴(𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  cop 4573  cmpt 5162   I cid 5489   × cxp 5588  cres 5592  ccom 5594  wf 6428  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7271  cmpo 7273  1st c1st 7822  2nd c2nd 7823  Basecbs 16910  HLchlt 37360  LHypclh 37994  LTrncltrn 38111  TEndoctendo 38762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-riotaBAD 36963
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-1st 7824  df-2nd 7825  df-undef 8080  df-map 8600  df-proset 18011  df-poset 18029  df-plt 18046  df-lub 18062  df-glb 18063  df-join 18064  df-meet 18065  df-p0 18141  df-p1 18142  df-lat 18148  df-clat 18215  df-oposet 37186  df-ol 37188  df-oml 37189  df-covers 37276  df-ats 37277  df-atl 37308  df-cvlat 37332  df-hlat 37361  df-llines 37508  df-lplanes 37509  df-lvols 37510  df-lines 37511  df-psubsp 37513  df-pmap 37514  df-padd 37806  df-lhyp 37998  df-laut 37999  df-ldil 38114  df-ltrn 38115  df-trl 38169  df-tendo 38765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator