Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopN Structured version   Visualization version   GIF version

Theorem dvhopN 40589
Description: Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace 𝐸. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by ⟨( I β†Ύ 𝐡), ( I β†Ύ 𝑇)⟩, π‘ˆ, ⟨𝐹, π‘‚βŸ©. We swapped the order of vector sum (their juxtaposition i.e. composition) to show ⟨𝐹, π‘‚βŸ© first. Note that 𝑂 and ( I β†Ύ 𝑇) are the zero and one of the division ring 𝐸, and ( I β†Ύ 𝐡) is the zero of the translation group. 𝑆 is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvhop.b 𝐡 = (Baseβ€˜πΎ)
dvhop.h 𝐻 = (LHypβ€˜πΎ)
dvhop.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dvhop.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
dvhop.p 𝑃 = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((π‘Žβ€˜π‘) ∘ (π‘β€˜π‘))))
dvhop.a 𝐴 = (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), ((2nd β€˜π‘“)𝑃(2nd β€˜π‘”))⟩)
dvhop.s 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)
dvhop.o 𝑂 = (𝑐 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
Assertion
Ref Expression
dvhopN (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ ⟨𝐹, π‘ˆβŸ© = (⟨𝐹, π‘‚βŸ©π΄(π‘ˆπ‘†βŸ¨( I β†Ύ 𝐡), ( I β†Ύ 𝑇)⟩)))
Distinct variable groups:   𝐡,𝑐   π‘Ž,𝑏,𝑓,𝑔,𝑠,𝐸   𝐻,𝑐   𝐾,𝑐   𝑃,𝑓,𝑔   π‘Ž,𝑐,𝑇,𝑏,𝑓,𝑔,𝑠   π‘Š,π‘Ž,𝑏,𝑐
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠,π‘Ž,𝑏,𝑐)   𝐡(𝑓,𝑔,𝑠,π‘Ž,𝑏)   𝑃(𝑠,π‘Ž,𝑏,𝑐)   𝑆(𝑓,𝑔,𝑠,π‘Ž,𝑏,𝑐)   π‘ˆ(𝑓,𝑔,𝑠,π‘Ž,𝑏,𝑐)   𝐸(𝑐)   𝐹(𝑓,𝑔,𝑠,π‘Ž,𝑏,𝑐)   𝐻(𝑓,𝑔,𝑠,π‘Ž,𝑏)   𝐾(𝑓,𝑔,𝑠,π‘Ž,𝑏)   𝑂(𝑓,𝑔,𝑠,π‘Ž,𝑏,𝑐)   π‘Š(𝑓,𝑔,𝑠)

Proof of Theorem dvhopN
StepHypRef Expression
1 simprr 772 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ π‘ˆ ∈ 𝐸)
2 dvhop.b . . . . . . 7 𝐡 = (Baseβ€˜πΎ)
3 dvhop.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
4 dvhop.t . . . . . . 7 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
52, 3, 4idltrn 39623 . . . . . 6 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ( I β†Ύ 𝐡) ∈ 𝑇)
65adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ ( I β†Ύ 𝐡) ∈ 𝑇)
7 dvhop.e . . . . . . 7 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
83, 4, 7tendoidcl 40242 . . . . . 6 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ( I β†Ύ 𝑇) ∈ 𝐸)
98adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ ( I β†Ύ 𝑇) ∈ 𝐸)
10 dvhop.s . . . . . 6 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)
1110dvhopspN 40588 . . . . 5 ((π‘ˆ ∈ 𝐸 ∧ (( I β†Ύ 𝐡) ∈ 𝑇 ∧ ( I β†Ύ 𝑇) ∈ 𝐸)) β†’ (π‘ˆπ‘†βŸ¨( I β†Ύ 𝐡), ( I β†Ύ 𝑇)⟩) = ⟨(π‘ˆβ€˜( I β†Ύ 𝐡)), (π‘ˆ ∘ ( I β†Ύ 𝑇))⟩)
121, 6, 9, 11syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ (π‘ˆπ‘†βŸ¨( I β†Ύ 𝐡), ( I β†Ύ 𝑇)⟩) = ⟨(π‘ˆβ€˜( I β†Ύ 𝐡)), (π‘ˆ ∘ ( I β†Ύ 𝑇))⟩)
132, 3, 7tendoid 40246 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) β†’ (π‘ˆβ€˜( I β†Ύ 𝐡)) = ( I β†Ύ 𝐡))
1413adantrl 715 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ (π‘ˆβ€˜( I β†Ύ 𝐡)) = ( I β†Ύ 𝐡))
153, 4, 7tendo1mulr 40244 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) β†’ (π‘ˆ ∘ ( I β†Ύ 𝑇)) = π‘ˆ)
1615adantrl 715 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ (π‘ˆ ∘ ( I β†Ύ 𝑇)) = π‘ˆ)
1714, 16opeq12d 4882 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ ⟨(π‘ˆβ€˜( I β†Ύ 𝐡)), (π‘ˆ ∘ ( I β†Ύ 𝑇))⟩ = ⟨( I β†Ύ 𝐡), π‘ˆβŸ©)
1812, 17eqtrd 2768 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ (π‘ˆπ‘†βŸ¨( I β†Ύ 𝐡), ( I β†Ύ 𝑇)⟩) = ⟨( I β†Ύ 𝐡), π‘ˆβŸ©)
1918oveq2d 7436 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ (⟨𝐹, π‘‚βŸ©π΄(π‘ˆπ‘†βŸ¨( I β†Ύ 𝐡), ( I β†Ύ 𝑇)⟩)) = (⟨𝐹, π‘‚βŸ©π΄βŸ¨( I β†Ύ 𝐡), π‘ˆβŸ©))
20 simprl 770 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ 𝐹 ∈ 𝑇)
21 dvhop.o . . . . 5 𝑂 = (𝑐 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
222, 3, 4, 7, 21tendo0cl 40263 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑂 ∈ 𝐸)
2322adantr 480 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ 𝑂 ∈ 𝐸)
24 dvhop.a . . . 4 𝐴 = (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), ((2nd β€˜π‘“)𝑃(2nd β€˜π‘”))⟩)
2524dvhopaddN 40587 . . 3 (((𝐹 ∈ 𝑇 ∧ 𝑂 ∈ 𝐸) ∧ (( I β†Ύ 𝐡) ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ (⟨𝐹, π‘‚βŸ©π΄βŸ¨( I β†Ύ 𝐡), π‘ˆβŸ©) = ⟨(𝐹 ∘ ( I β†Ύ 𝐡)), (π‘‚π‘ƒπ‘ˆ)⟩)
2620, 23, 6, 1, 25syl22anc 838 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ (⟨𝐹, π‘‚βŸ©π΄βŸ¨( I β†Ύ 𝐡), π‘ˆβŸ©) = ⟨(𝐹 ∘ ( I β†Ύ 𝐡)), (π‘‚π‘ƒπ‘ˆ)⟩)
272, 3, 4ltrn1o 39597 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹:𝐡–1-1-onto→𝐡)
2827adantrr 716 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ 𝐹:𝐡–1-1-onto→𝐡)
29 f1of 6839 . . . 4 (𝐹:𝐡–1-1-onto→𝐡 β†’ 𝐹:𝐡⟢𝐡)
30 fcoi1 6771 . . . 4 (𝐹:𝐡⟢𝐡 β†’ (𝐹 ∘ ( I β†Ύ 𝐡)) = 𝐹)
3128, 29, 303syl 18 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ (𝐹 ∘ ( I β†Ύ 𝐡)) = 𝐹)
32 dvhop.p . . . . 5 𝑃 = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((π‘Žβ€˜π‘) ∘ (π‘β€˜π‘))))
332, 3, 4, 7, 21, 32tendo0pl 40264 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) β†’ (π‘‚π‘ƒπ‘ˆ) = π‘ˆ)
3433adantrl 715 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ (π‘‚π‘ƒπ‘ˆ) = π‘ˆ)
3531, 34opeq12d 4882 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ ⟨(𝐹 ∘ ( I β†Ύ 𝐡)), (π‘‚π‘ƒπ‘ˆ)⟩ = ⟨𝐹, π‘ˆβŸ©)
3619, 26, 353eqtrrd 2773 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ π‘ˆ ∈ 𝐸)) β†’ ⟨𝐹, π‘ˆβŸ© = (⟨𝐹, π‘‚βŸ©π΄(π‘ˆπ‘†βŸ¨( I β†Ύ 𝐡), ( I β†Ύ 𝑇)⟩)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099  βŸ¨cop 4635   ↦ cmpt 5231   I cid 5575   Γ— cxp 5676   β†Ύ cres 5680   ∘ ccom 5682  βŸΆwf 6544  β€“1-1-ontoβ†’wf1o 6547  β€˜cfv 6548  (class class class)co 7420   ∈ cmpo 7422  1st c1st 7991  2nd c2nd 7992  Basecbs 17180  HLchlt 38822  LHypclh 39457  LTrncltrn 39574  TEndoctendo 40225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-riotaBAD 38425
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-undef 8279  df-map 8847  df-proset 18287  df-poset 18305  df-plt 18322  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-p0 18417  df-p1 18418  df-lat 18424  df-clat 18491  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-llines 38971  df-lplanes 38972  df-lvols 38973  df-lines 38974  df-psubsp 38976  df-pmap 38977  df-padd 39269  df-lhyp 39461  df-laut 39462  df-ldil 39577  df-ltrn 39578  df-trl 39632  df-tendo 40228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator