| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopN | Structured version Visualization version GIF version | ||
| Description: Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace 𝐸. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by 〈( I ↾ 𝐵), ( I ↾ 𝑇)〉, 𝑈, 〈𝐹, 𝑂〉. We swapped the order of vector sum (their juxtaposition i.e. composition) to show 〈𝐹, 𝑂〉 first. Note that 𝑂 and ( I ↾ 𝑇) are the zero and one of the division ring 𝐸, and ( I ↾ 𝐵) is the zero of the translation group. 𝑆 is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvhop.b | ⊢ 𝐵 = (Base‘𝐾) |
| dvhop.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvhop.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dvhop.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dvhop.p | ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) |
| dvhop.a | ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) |
| dvhop.s | ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) |
| dvhop.o | ⊢ 𝑂 = (𝑐 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Ref | Expression |
|---|---|
| dvhopN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈𝐹, 𝑈〉 = (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝑈 ∈ 𝐸) | |
| 2 | dvhop.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | dvhop.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dvhop.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | 2, 3, 4 | idltrn 40169 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → ( I ↾ 𝐵) ∈ 𝑇) |
| 7 | dvhop.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 8 | 3, 4, 7 | tendoidcl 40788 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → ( I ↾ 𝑇) ∈ 𝐸) |
| 10 | dvhop.s | . . . . . 6 ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) | |
| 11 | 10 | dvhopspN 41134 | . . . . 5 ⊢ ((𝑈 ∈ 𝐸 ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉) = 〈(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))〉) |
| 12 | 1, 6, 9, 11 | syl12anc 836 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉) = 〈(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))〉) |
| 13 | 2, 3, 7 | tendoid 40792 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
| 14 | 13 | adantrl 716 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
| 15 | 3, 4, 7 | tendo1mulr 40790 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) |
| 16 | 15 | adantrl 716 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) |
| 17 | 14, 16 | opeq12d 4857 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))〉 = 〈( I ↾ 𝐵), 𝑈〉) |
| 18 | 12, 17 | eqtrd 2770 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉) = 〈( I ↾ 𝐵), 𝑈〉) |
| 19 | 18 | oveq2d 7421 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉)) = (〈𝐹, 𝑂〉𝐴〈( I ↾ 𝐵), 𝑈〉)) |
| 20 | simprl 770 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝐹 ∈ 𝑇) | |
| 21 | dvhop.o | . . . . 5 ⊢ 𝑂 = (𝑐 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 22 | 2, 3, 4, 7, 21 | tendo0cl 40809 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
| 23 | 22 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝑂 ∈ 𝐸) |
| 24 | dvhop.a | . . . 4 ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) | |
| 25 | 24 | dvhopaddN 41133 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑂 ∈ 𝐸) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (〈𝐹, 𝑂〉𝐴〈( I ↾ 𝐵), 𝑈〉) = 〈(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)〉) |
| 26 | 20, 23, 6, 1, 25 | syl22anc 838 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (〈𝐹, 𝑂〉𝐴〈( I ↾ 𝐵), 𝑈〉) = 〈(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)〉) |
| 27 | 2, 3, 4 | ltrn1o 40143 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
| 28 | 27 | adantrr 717 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝐹:𝐵–1-1-onto→𝐵) |
| 29 | f1of 6818 | . . . 4 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵⟶𝐵) | |
| 30 | fcoi1 6752 | . . . 4 ⊢ (𝐹:𝐵⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) | |
| 31 | 28, 29, 30 | 3syl 18 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) |
| 32 | dvhop.p | . . . . 5 ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) | |
| 33 | 2, 3, 4, 7, 21, 32 | tendo0pl 40810 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑂𝑃𝑈) = 𝑈) |
| 34 | 33 | adantrl 716 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑂𝑃𝑈) = 𝑈) |
| 35 | 31, 34 | opeq12d 4857 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)〉 = 〈𝐹, 𝑈〉) |
| 36 | 19, 26, 35 | 3eqtrrd 2775 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈𝐹, 𝑈〉 = (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 ↦ cmpt 5201 I cid 5547 × cxp 5652 ↾ cres 5656 ∘ ccom 5658 ⟶wf 6527 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 1st c1st 7986 2nd c2nd 7987 Basecbs 17228 HLchlt 39368 LHypclh 40003 LTrncltrn 40120 TEndoctendo 40771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-riotaBAD 38971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-undef 8272 df-map 8842 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-clat 18509 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39517 df-lplanes 39518 df-lvols 39519 df-lines 39520 df-psubsp 39522 df-pmap 39523 df-padd 39815 df-lhyp 40007 df-laut 40008 df-ldil 40123 df-ltrn 40124 df-trl 40178 df-tendo 40774 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |