![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopN | Structured version Visualization version GIF version |
Description: Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace 𝐸. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by 〈( I ↾ 𝐵), ( I ↾ 𝑇)〉, 𝑈, 〈𝐹, 𝑂〉. We swapped the order of vector sum (their juxtaposition i.e. composition) to show 〈𝐹, 𝑂〉 first. Note that 𝑂 and ( I ↾ 𝑇) are the zero and one of the division ring 𝐸, and ( I ↾ 𝐵) is the zero of the translation group. 𝑆 is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvhop.b | ⊢ 𝐵 = (Base‘𝐾) |
dvhop.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhop.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhop.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhop.p | ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) |
dvhop.a | ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) |
dvhop.s | ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) |
dvhop.o | ⊢ 𝑂 = (𝑐 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
dvhopN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈𝐹, 𝑈〉 = (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 771 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝑈 ∈ 𝐸) | |
2 | dvhop.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
3 | dvhop.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dvhop.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | idltrn 39753 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
6 | 5 | adantr 479 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → ( I ↾ 𝐵) ∈ 𝑇) |
7 | dvhop.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
8 | 3, 4, 7 | tendoidcl 40372 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
9 | 8 | adantr 479 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → ( I ↾ 𝑇) ∈ 𝐸) |
10 | dvhop.s | . . . . . 6 ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) | |
11 | 10 | dvhopspN 40718 | . . . . 5 ⊢ ((𝑈 ∈ 𝐸 ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉) = 〈(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))〉) |
12 | 1, 6, 9, 11 | syl12anc 835 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉) = 〈(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))〉) |
13 | 2, 3, 7 | tendoid 40376 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
14 | 13 | adantrl 714 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
15 | 3, 4, 7 | tendo1mulr 40374 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) |
16 | 15 | adantrl 714 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) |
17 | 14, 16 | opeq12d 4883 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))〉 = 〈( I ↾ 𝐵), 𝑈〉) |
18 | 12, 17 | eqtrd 2765 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉) = 〈( I ↾ 𝐵), 𝑈〉) |
19 | 18 | oveq2d 7435 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉)) = (〈𝐹, 𝑂〉𝐴〈( I ↾ 𝐵), 𝑈〉)) |
20 | simprl 769 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝐹 ∈ 𝑇) | |
21 | dvhop.o | . . . . 5 ⊢ 𝑂 = (𝑐 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
22 | 2, 3, 4, 7, 21 | tendo0cl 40393 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
23 | 22 | adantr 479 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝑂 ∈ 𝐸) |
24 | dvhop.a | . . . 4 ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) | |
25 | 24 | dvhopaddN 40717 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑂 ∈ 𝐸) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (〈𝐹, 𝑂〉𝐴〈( I ↾ 𝐵), 𝑈〉) = 〈(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)〉) |
26 | 20, 23, 6, 1, 25 | syl22anc 837 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (〈𝐹, 𝑂〉𝐴〈( I ↾ 𝐵), 𝑈〉) = 〈(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)〉) |
27 | 2, 3, 4 | ltrn1o 39727 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
28 | 27 | adantrr 715 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝐹:𝐵–1-1-onto→𝐵) |
29 | f1of 6838 | . . . 4 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵⟶𝐵) | |
30 | fcoi1 6771 | . . . 4 ⊢ (𝐹:𝐵⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) | |
31 | 28, 29, 30 | 3syl 18 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) |
32 | dvhop.p | . . . . 5 ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) | |
33 | 2, 3, 4, 7, 21, 32 | tendo0pl 40394 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑂𝑃𝑈) = 𝑈) |
34 | 33 | adantrl 714 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑂𝑃𝑈) = 𝑈) |
35 | 31, 34 | opeq12d 4883 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)〉 = 〈𝐹, 𝑈〉) |
36 | 19, 26, 35 | 3eqtrrd 2770 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈𝐹, 𝑈〉 = (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 〈cop 4636 ↦ cmpt 5232 I cid 5575 × cxp 5676 ↾ cres 5680 ∘ ccom 5682 ⟶wf 6545 –1-1-onto→wf1o 6548 ‘cfv 6549 (class class class)co 7419 ∈ cmpo 7421 1st c1st 7992 2nd c2nd 7993 Basecbs 17183 HLchlt 38952 LHypclh 39587 LTrncltrn 39704 TEndoctendo 40355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-riotaBAD 38555 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-undef 8279 df-map 8847 df-proset 18290 df-poset 18308 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-p1 18421 df-lat 18427 df-clat 18494 df-oposet 38778 df-ol 38780 df-oml 38781 df-covers 38868 df-ats 38869 df-atl 38900 df-cvlat 38924 df-hlat 38953 df-llines 39101 df-lplanes 39102 df-lvols 39103 df-lines 39104 df-psubsp 39106 df-pmap 39107 df-padd 39399 df-lhyp 39591 df-laut 39592 df-ldil 39707 df-ltrn 39708 df-trl 39762 df-tendo 40358 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |