![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopN | Structured version Visualization version GIF version |
Description: Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace 𝐸. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by 〈( I ↾ 𝐵), ( I ↾ 𝑇)〉, 𝑈, 〈𝐹, 𝑂〉. We swapped the order of vector sum (their juxtaposition i.e. composition) to show 〈𝐹, 𝑂〉 first. Note that 𝑂 and ( I ↾ 𝑇) are the zero and one of the division ring 𝐸, and ( I ↾ 𝐵) is the zero of the translation group. 𝑆 is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvhop.b | ⊢ 𝐵 = (Base‘𝐾) |
dvhop.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhop.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhop.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhop.p | ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) |
dvhop.a | ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) |
dvhop.s | ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) |
dvhop.o | ⊢ 𝑂 = (𝑐 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
dvhopN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈𝐹, 𝑈〉 = (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 772 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝑈 ∈ 𝐸) | |
2 | dvhop.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
3 | dvhop.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dvhop.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | idltrn 40107 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
6 | 5 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → ( I ↾ 𝐵) ∈ 𝑇) |
7 | dvhop.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
8 | 3, 4, 7 | tendoidcl 40726 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
9 | 8 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → ( I ↾ 𝑇) ∈ 𝐸) |
10 | dvhop.s | . . . . . 6 ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) | |
11 | 10 | dvhopspN 41072 | . . . . 5 ⊢ ((𝑈 ∈ 𝐸 ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉) = 〈(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))〉) |
12 | 1, 6, 9, 11 | syl12anc 836 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉) = 〈(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))〉) |
13 | 2, 3, 7 | tendoid 40730 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
14 | 13 | adantrl 715 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
15 | 3, 4, 7 | tendo1mulr 40728 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) |
16 | 15 | adantrl 715 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) |
17 | 14, 16 | opeq12d 4905 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))〉 = 〈( I ↾ 𝐵), 𝑈〉) |
18 | 12, 17 | eqtrd 2780 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉) = 〈( I ↾ 𝐵), 𝑈〉) |
19 | 18 | oveq2d 7464 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉)) = (〈𝐹, 𝑂〉𝐴〈( I ↾ 𝐵), 𝑈〉)) |
20 | simprl 770 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝐹 ∈ 𝑇) | |
21 | dvhop.o | . . . . 5 ⊢ 𝑂 = (𝑐 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
22 | 2, 3, 4, 7, 21 | tendo0cl 40747 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
23 | 22 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝑂 ∈ 𝐸) |
24 | dvhop.a | . . . 4 ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) | |
25 | 24 | dvhopaddN 41071 | . . 3 ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑂 ∈ 𝐸) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (〈𝐹, 𝑂〉𝐴〈( I ↾ 𝐵), 𝑈〉) = 〈(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)〉) |
26 | 20, 23, 6, 1, 25 | syl22anc 838 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (〈𝐹, 𝑂〉𝐴〈( I ↾ 𝐵), 𝑈〉) = 〈(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)〉) |
27 | 2, 3, 4 | ltrn1o 40081 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
28 | 27 | adantrr 716 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 𝐹:𝐵–1-1-onto→𝐵) |
29 | f1of 6862 | . . . 4 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵⟶𝐵) | |
30 | fcoi1 6795 | . . . 4 ⊢ (𝐹:𝐵⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) | |
31 | 28, 29, 30 | 3syl 18 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) |
32 | dvhop.p | . . . . 5 ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) | |
33 | 2, 3, 4, 7, 21, 32 | tendo0pl 40748 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑂𝑃𝑈) = 𝑈) |
34 | 33 | adantrl 715 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑂𝑃𝑈) = 𝑈) |
35 | 31, 34 | opeq12d 4905 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)〉 = 〈𝐹, 𝑈〉) |
36 | 19, 26, 35 | 3eqtrrd 2785 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈𝐹, 𝑈〉 = (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 ↦ cmpt 5249 I cid 5592 × cxp 5698 ↾ cres 5702 ∘ ccom 5704 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1st c1st 8028 2nd c2nd 8029 Basecbs 17258 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 TEndoctendo 40709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-undef 8314 df-map 8886 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tendo 40712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |