Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocival Structured version   Visualization version   GIF version

Theorem dya2iocival 33949
Description: The function 𝐼 returns closed-below open-above dyadic rational intervals covering the real line. This is the same construction as in dyadmbl 25545. (Contributed by Thierry Arnoux, 24-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGenβ€˜ran (,))
dya2ioc.1 𝐼 = (π‘₯ ∈ β„€, 𝑛 ∈ β„€ ↦ ((π‘₯ / (2↑𝑛))[,)((π‘₯ + 1) / (2↑𝑛))))
Assertion
Ref Expression
dya2iocival ((𝑁 ∈ β„€ ∧ 𝑋 ∈ β„€) β†’ (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))))
Distinct variable group:   π‘₯,𝑛
Allowed substitution hints:   𝐼(π‘₯,𝑛)   𝐽(π‘₯,𝑛)   𝑁(π‘₯,𝑛)   𝑋(π‘₯,𝑛)

Proof of Theorem dya2iocival
Dummy variables π‘š 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7422 . . . 4 (𝑒 = 𝑋 β†’ (𝑒 / (2β†‘π‘š)) = (𝑋 / (2β†‘π‘š)))
2 oveq1 7422 . . . . 5 (𝑒 = 𝑋 β†’ (𝑒 + 1) = (𝑋 + 1))
32oveq1d 7430 . . . 4 (𝑒 = 𝑋 β†’ ((𝑒 + 1) / (2β†‘π‘š)) = ((𝑋 + 1) / (2β†‘π‘š)))
41, 3oveq12d 7433 . . 3 (𝑒 = 𝑋 β†’ ((𝑒 / (2β†‘π‘š))[,)((𝑒 + 1) / (2β†‘π‘š))) = ((𝑋 / (2β†‘π‘š))[,)((𝑋 + 1) / (2β†‘π‘š))))
5 oveq2 7423 . . . . 5 (π‘š = 𝑁 β†’ (2β†‘π‘š) = (2↑𝑁))
65oveq2d 7431 . . . 4 (π‘š = 𝑁 β†’ (𝑋 / (2β†‘π‘š)) = (𝑋 / (2↑𝑁)))
75oveq2d 7431 . . . 4 (π‘š = 𝑁 β†’ ((𝑋 + 1) / (2β†‘π‘š)) = ((𝑋 + 1) / (2↑𝑁)))
86, 7oveq12d 7433 . . 3 (π‘š = 𝑁 β†’ ((𝑋 / (2β†‘π‘š))[,)((𝑋 + 1) / (2β†‘π‘š))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))))
9 dya2ioc.1 . . . 4 𝐼 = (π‘₯ ∈ β„€, 𝑛 ∈ β„€ ↦ ((π‘₯ / (2↑𝑛))[,)((π‘₯ + 1) / (2↑𝑛))))
10 oveq1 7422 . . . . . 6 (𝑒 = π‘₯ β†’ (𝑒 / (2β†‘π‘š)) = (π‘₯ / (2β†‘π‘š)))
11 oveq1 7422 . . . . . . 7 (𝑒 = π‘₯ β†’ (𝑒 + 1) = (π‘₯ + 1))
1211oveq1d 7430 . . . . . 6 (𝑒 = π‘₯ β†’ ((𝑒 + 1) / (2β†‘π‘š)) = ((π‘₯ + 1) / (2β†‘π‘š)))
1310, 12oveq12d 7433 . . . . 5 (𝑒 = π‘₯ β†’ ((𝑒 / (2β†‘π‘š))[,)((𝑒 + 1) / (2β†‘π‘š))) = ((π‘₯ / (2β†‘π‘š))[,)((π‘₯ + 1) / (2β†‘π‘š))))
14 oveq2 7423 . . . . . . 7 (π‘š = 𝑛 β†’ (2β†‘π‘š) = (2↑𝑛))
1514oveq2d 7431 . . . . . 6 (π‘š = 𝑛 β†’ (π‘₯ / (2β†‘π‘š)) = (π‘₯ / (2↑𝑛)))
1614oveq2d 7431 . . . . . 6 (π‘š = 𝑛 β†’ ((π‘₯ + 1) / (2β†‘π‘š)) = ((π‘₯ + 1) / (2↑𝑛)))
1715, 16oveq12d 7433 . . . . 5 (π‘š = 𝑛 β†’ ((π‘₯ / (2β†‘π‘š))[,)((π‘₯ + 1) / (2β†‘π‘š))) = ((π‘₯ / (2↑𝑛))[,)((π‘₯ + 1) / (2↑𝑛))))
1813, 17cbvmpov 7511 . . . 4 (𝑒 ∈ β„€, π‘š ∈ β„€ ↦ ((𝑒 / (2β†‘π‘š))[,)((𝑒 + 1) / (2β†‘π‘š)))) = (π‘₯ ∈ β„€, 𝑛 ∈ β„€ ↦ ((π‘₯ / (2↑𝑛))[,)((π‘₯ + 1) / (2↑𝑛))))
199, 18eqtr4i 2756 . . 3 𝐼 = (𝑒 ∈ β„€, π‘š ∈ β„€ ↦ ((𝑒 / (2β†‘π‘š))[,)((𝑒 + 1) / (2β†‘π‘š))))
20 ovex 7448 . . 3 ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ∈ V
214, 8, 19, 20ovmpo 7577 . 2 ((𝑋 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))))
2221ancoms 457 1 ((𝑁 ∈ β„€ ∧ 𝑋 ∈ β„€) β†’ (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  ran crn 5673  β€˜cfv 6542  (class class class)co 7415   ∈ cmpo 7417  1c1 11137   + caddc 11139   / cdiv 11899  2c2 12295  β„€cz 12586  (,)cioo 13354  [,)cico 13356  β†‘cexp 14056  topGenctg 17416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3770  df-dif 3943  df-un 3945  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7418  df-oprab 7419  df-mpo 7420
This theorem is referenced by:  dya2iocress  33950  dya2iocbrsiga  33951  dya2icoseg  33953
  Copyright terms: Public domain W3C validator