![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocival | Structured version Visualization version GIF version |
Description: The function 𝐼 returns closed-below open-above dyadic rational intervals covering the real line. This is the same construction as in dyadmbl 25542. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
Ref | Expression |
---|---|
dya2iocival | ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7427 | . . . 4 ⊢ (𝑢 = 𝑋 → (𝑢 / (2↑𝑚)) = (𝑋 / (2↑𝑚))) | |
2 | oveq1 7427 | . . . . 5 ⊢ (𝑢 = 𝑋 → (𝑢 + 1) = (𝑋 + 1)) | |
3 | 2 | oveq1d 7435 | . . . 4 ⊢ (𝑢 = 𝑋 → ((𝑢 + 1) / (2↑𝑚)) = ((𝑋 + 1) / (2↑𝑚))) |
4 | 1, 3 | oveq12d 7438 | . . 3 ⊢ (𝑢 = 𝑋 → ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚))) = ((𝑋 / (2↑𝑚))[,)((𝑋 + 1) / (2↑𝑚)))) |
5 | oveq2 7428 | . . . . 5 ⊢ (𝑚 = 𝑁 → (2↑𝑚) = (2↑𝑁)) | |
6 | 5 | oveq2d 7436 | . . . 4 ⊢ (𝑚 = 𝑁 → (𝑋 / (2↑𝑚)) = (𝑋 / (2↑𝑁))) |
7 | 5 | oveq2d 7436 | . . . 4 ⊢ (𝑚 = 𝑁 → ((𝑋 + 1) / (2↑𝑚)) = ((𝑋 + 1) / (2↑𝑁))) |
8 | 6, 7 | oveq12d 7438 | . . 3 ⊢ (𝑚 = 𝑁 → ((𝑋 / (2↑𝑚))[,)((𝑋 + 1) / (2↑𝑚))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
9 | dya2ioc.1 | . . . 4 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
10 | oveq1 7427 | . . . . . 6 ⊢ (𝑢 = 𝑥 → (𝑢 / (2↑𝑚)) = (𝑥 / (2↑𝑚))) | |
11 | oveq1 7427 | . . . . . . 7 ⊢ (𝑢 = 𝑥 → (𝑢 + 1) = (𝑥 + 1)) | |
12 | 11 | oveq1d 7435 | . . . . . 6 ⊢ (𝑢 = 𝑥 → ((𝑢 + 1) / (2↑𝑚)) = ((𝑥 + 1) / (2↑𝑚))) |
13 | 10, 12 | oveq12d 7438 | . . . . 5 ⊢ (𝑢 = 𝑥 → ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚))) = ((𝑥 / (2↑𝑚))[,)((𝑥 + 1) / (2↑𝑚)))) |
14 | oveq2 7428 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛)) | |
15 | 14 | oveq2d 7436 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝑥 / (2↑𝑚)) = (𝑥 / (2↑𝑛))) |
16 | 14 | oveq2d 7436 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ((𝑥 + 1) / (2↑𝑚)) = ((𝑥 + 1) / (2↑𝑛))) |
17 | 15, 16 | oveq12d 7438 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝑥 / (2↑𝑚))[,)((𝑥 + 1) / (2↑𝑚))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
18 | 13, 17 | cbvmpov 7515 | . . . 4 ⊢ (𝑢 ∈ ℤ, 𝑚 ∈ ℤ ↦ ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚)))) = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
19 | 9, 18 | eqtr4i 2759 | . . 3 ⊢ 𝐼 = (𝑢 ∈ ℤ, 𝑚 ∈ ℤ ↦ ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚)))) |
20 | ovex 7453 | . . 3 ⊢ ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ∈ V | |
21 | 4, 8, 19, 20 | ovmpo 7581 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
22 | 21 | ancoms 458 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ran crn 5679 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 1c1 11140 + caddc 11142 / cdiv 11902 2c2 12298 ℤcz 12589 (,)cioo 13357 [,)cico 13359 ↑cexp 14059 topGenctg 17419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 |
This theorem is referenced by: dya2iocress 33894 dya2iocbrsiga 33895 dya2icoseg 33897 |
Copyright terms: Public domain | W3C validator |