Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocival Structured version   Visualization version   GIF version

Theorem dya2iocival 32873
Description: The function 𝐼 returns closed-below open-above dyadic rational intervals covering the real line. This is the same construction as in dyadmbl 24964. (Contributed by Thierry Arnoux, 24-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
Assertion
Ref Expression
dya2iocival ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))))
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐼(𝑥,𝑛)   𝐽(𝑥,𝑛)   𝑁(𝑥,𝑛)   𝑋(𝑥,𝑛)

Proof of Theorem dya2iocival
Dummy variables 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7364 . . . 4 (𝑢 = 𝑋 → (𝑢 / (2↑𝑚)) = (𝑋 / (2↑𝑚)))
2 oveq1 7364 . . . . 5 (𝑢 = 𝑋 → (𝑢 + 1) = (𝑋 + 1))
32oveq1d 7372 . . . 4 (𝑢 = 𝑋 → ((𝑢 + 1) / (2↑𝑚)) = ((𝑋 + 1) / (2↑𝑚)))
41, 3oveq12d 7375 . . 3 (𝑢 = 𝑋 → ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚))) = ((𝑋 / (2↑𝑚))[,)((𝑋 + 1) / (2↑𝑚))))
5 oveq2 7365 . . . . 5 (𝑚 = 𝑁 → (2↑𝑚) = (2↑𝑁))
65oveq2d 7373 . . . 4 (𝑚 = 𝑁 → (𝑋 / (2↑𝑚)) = (𝑋 / (2↑𝑁)))
75oveq2d 7373 . . . 4 (𝑚 = 𝑁 → ((𝑋 + 1) / (2↑𝑚)) = ((𝑋 + 1) / (2↑𝑁)))
86, 7oveq12d 7375 . . 3 (𝑚 = 𝑁 → ((𝑋 / (2↑𝑚))[,)((𝑋 + 1) / (2↑𝑚))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))))
9 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
10 oveq1 7364 . . . . . 6 (𝑢 = 𝑥 → (𝑢 / (2↑𝑚)) = (𝑥 / (2↑𝑚)))
11 oveq1 7364 . . . . . . 7 (𝑢 = 𝑥 → (𝑢 + 1) = (𝑥 + 1))
1211oveq1d 7372 . . . . . 6 (𝑢 = 𝑥 → ((𝑢 + 1) / (2↑𝑚)) = ((𝑥 + 1) / (2↑𝑚)))
1310, 12oveq12d 7375 . . . . 5 (𝑢 = 𝑥 → ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚))) = ((𝑥 / (2↑𝑚))[,)((𝑥 + 1) / (2↑𝑚))))
14 oveq2 7365 . . . . . . 7 (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛))
1514oveq2d 7373 . . . . . 6 (𝑚 = 𝑛 → (𝑥 / (2↑𝑚)) = (𝑥 / (2↑𝑛)))
1614oveq2d 7373 . . . . . 6 (𝑚 = 𝑛 → ((𝑥 + 1) / (2↑𝑚)) = ((𝑥 + 1) / (2↑𝑛)))
1715, 16oveq12d 7375 . . . . 5 (𝑚 = 𝑛 → ((𝑥 / (2↑𝑚))[,)((𝑥 + 1) / (2↑𝑚))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
1813, 17cbvmpov 7452 . . . 4 (𝑢 ∈ ℤ, 𝑚 ∈ ℤ ↦ ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚)))) = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
199, 18eqtr4i 2767 . . 3 𝐼 = (𝑢 ∈ ℤ, 𝑚 ∈ ℤ ↦ ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚))))
20 ovex 7390 . . 3 ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ∈ V
214, 8, 19, 20ovmpo 7515 . 2 ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))))
2221ancoms 459 1 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  ran crn 5634  cfv 6496  (class class class)co 7357  cmpo 7359  1c1 11052   + caddc 11054   / cdiv 11812  2c2 12208  cz 12499  (,)cioo 13264  [,)cico 13266  cexp 13967  topGenctg 17319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-iota 6448  df-fun 6498  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362
This theorem is referenced by:  dya2iocress  32874  dya2iocbrsiga  32875  dya2icoseg  32877
  Copyright terms: Public domain W3C validator