Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocival | Structured version Visualization version GIF version |
Description: The function 𝐼 returns closed-below open-above dyadic rational intervals covering the real line. This is the same construction as in dyadmbl 24669. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
Ref | Expression |
---|---|
dya2iocival | ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7262 | . . . 4 ⊢ (𝑢 = 𝑋 → (𝑢 / (2↑𝑚)) = (𝑋 / (2↑𝑚))) | |
2 | oveq1 7262 | . . . . 5 ⊢ (𝑢 = 𝑋 → (𝑢 + 1) = (𝑋 + 1)) | |
3 | 2 | oveq1d 7270 | . . . 4 ⊢ (𝑢 = 𝑋 → ((𝑢 + 1) / (2↑𝑚)) = ((𝑋 + 1) / (2↑𝑚))) |
4 | 1, 3 | oveq12d 7273 | . . 3 ⊢ (𝑢 = 𝑋 → ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚))) = ((𝑋 / (2↑𝑚))[,)((𝑋 + 1) / (2↑𝑚)))) |
5 | oveq2 7263 | . . . . 5 ⊢ (𝑚 = 𝑁 → (2↑𝑚) = (2↑𝑁)) | |
6 | 5 | oveq2d 7271 | . . . 4 ⊢ (𝑚 = 𝑁 → (𝑋 / (2↑𝑚)) = (𝑋 / (2↑𝑁))) |
7 | 5 | oveq2d 7271 | . . . 4 ⊢ (𝑚 = 𝑁 → ((𝑋 + 1) / (2↑𝑚)) = ((𝑋 + 1) / (2↑𝑁))) |
8 | 6, 7 | oveq12d 7273 | . . 3 ⊢ (𝑚 = 𝑁 → ((𝑋 / (2↑𝑚))[,)((𝑋 + 1) / (2↑𝑚))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
9 | dya2ioc.1 | . . . 4 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
10 | oveq1 7262 | . . . . . 6 ⊢ (𝑢 = 𝑥 → (𝑢 / (2↑𝑚)) = (𝑥 / (2↑𝑚))) | |
11 | oveq1 7262 | . . . . . . 7 ⊢ (𝑢 = 𝑥 → (𝑢 + 1) = (𝑥 + 1)) | |
12 | 11 | oveq1d 7270 | . . . . . 6 ⊢ (𝑢 = 𝑥 → ((𝑢 + 1) / (2↑𝑚)) = ((𝑥 + 1) / (2↑𝑚))) |
13 | 10, 12 | oveq12d 7273 | . . . . 5 ⊢ (𝑢 = 𝑥 → ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚))) = ((𝑥 / (2↑𝑚))[,)((𝑥 + 1) / (2↑𝑚)))) |
14 | oveq2 7263 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛)) | |
15 | 14 | oveq2d 7271 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝑥 / (2↑𝑚)) = (𝑥 / (2↑𝑛))) |
16 | 14 | oveq2d 7271 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ((𝑥 + 1) / (2↑𝑚)) = ((𝑥 + 1) / (2↑𝑛))) |
17 | 15, 16 | oveq12d 7273 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝑥 / (2↑𝑚))[,)((𝑥 + 1) / (2↑𝑚))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
18 | 13, 17 | cbvmpov 7348 | . . . 4 ⊢ (𝑢 ∈ ℤ, 𝑚 ∈ ℤ ↦ ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚)))) = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
19 | 9, 18 | eqtr4i 2769 | . . 3 ⊢ 𝐼 = (𝑢 ∈ ℤ, 𝑚 ∈ ℤ ↦ ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚)))) |
20 | ovex 7288 | . . 3 ⊢ ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ∈ V | |
21 | 4, 8, 19, 20 | ovmpo 7411 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
22 | 21 | ancoms 458 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1c1 10803 + caddc 10805 / cdiv 11562 2c2 11958 ℤcz 12249 (,)cioo 13008 [,)cico 13010 ↑cexp 13710 topGenctg 17065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: dya2iocress 32141 dya2iocbrsiga 32142 dya2icoseg 32144 |
Copyright terms: Public domain | W3C validator |