![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocival | Structured version Visualization version GIF version |
Description: The function 𝐼 returns closed-below open-above dyadic rational intervals covering the real line. This is the same construction as in dyadmbl 23707. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
Ref | Expression |
---|---|
dya2iocival | ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6886 | . . . 4 ⊢ (𝑢 = 𝑋 → (𝑢 / (2↑𝑚)) = (𝑋 / (2↑𝑚))) | |
2 | oveq1 6886 | . . . . 5 ⊢ (𝑢 = 𝑋 → (𝑢 + 1) = (𝑋 + 1)) | |
3 | 2 | oveq1d 6894 | . . . 4 ⊢ (𝑢 = 𝑋 → ((𝑢 + 1) / (2↑𝑚)) = ((𝑋 + 1) / (2↑𝑚))) |
4 | 1, 3 | oveq12d 6897 | . . 3 ⊢ (𝑢 = 𝑋 → ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚))) = ((𝑋 / (2↑𝑚))[,)((𝑋 + 1) / (2↑𝑚)))) |
5 | oveq2 6887 | . . . . 5 ⊢ (𝑚 = 𝑁 → (2↑𝑚) = (2↑𝑁)) | |
6 | 5 | oveq2d 6895 | . . . 4 ⊢ (𝑚 = 𝑁 → (𝑋 / (2↑𝑚)) = (𝑋 / (2↑𝑁))) |
7 | 5 | oveq2d 6895 | . . . 4 ⊢ (𝑚 = 𝑁 → ((𝑋 + 1) / (2↑𝑚)) = ((𝑋 + 1) / (2↑𝑁))) |
8 | 6, 7 | oveq12d 6897 | . . 3 ⊢ (𝑚 = 𝑁 → ((𝑋 / (2↑𝑚))[,)((𝑋 + 1) / (2↑𝑚))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
9 | dya2ioc.1 | . . . 4 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
10 | oveq1 6886 | . . . . . 6 ⊢ (𝑢 = 𝑥 → (𝑢 / (2↑𝑚)) = (𝑥 / (2↑𝑚))) | |
11 | oveq1 6886 | . . . . . . 7 ⊢ (𝑢 = 𝑥 → (𝑢 + 1) = (𝑥 + 1)) | |
12 | 11 | oveq1d 6894 | . . . . . 6 ⊢ (𝑢 = 𝑥 → ((𝑢 + 1) / (2↑𝑚)) = ((𝑥 + 1) / (2↑𝑚))) |
13 | 10, 12 | oveq12d 6897 | . . . . 5 ⊢ (𝑢 = 𝑥 → ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚))) = ((𝑥 / (2↑𝑚))[,)((𝑥 + 1) / (2↑𝑚)))) |
14 | oveq2 6887 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛)) | |
15 | 14 | oveq2d 6895 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝑥 / (2↑𝑚)) = (𝑥 / (2↑𝑛))) |
16 | 14 | oveq2d 6895 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ((𝑥 + 1) / (2↑𝑚)) = ((𝑥 + 1) / (2↑𝑛))) |
17 | 15, 16 | oveq12d 6897 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝑥 / (2↑𝑚))[,)((𝑥 + 1) / (2↑𝑚))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
18 | 13, 17 | cbvmpt2v 6970 | . . . 4 ⊢ (𝑢 ∈ ℤ, 𝑚 ∈ ℤ ↦ ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚)))) = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
19 | 9, 18 | eqtr4i 2825 | . . 3 ⊢ 𝐼 = (𝑢 ∈ ℤ, 𝑚 ∈ ℤ ↦ ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚)))) |
20 | ovex 6911 | . . 3 ⊢ ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ∈ V | |
21 | 4, 8, 19, 20 | ovmpt2 7031 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
22 | 21 | ancoms 451 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ran crn 5314 ‘cfv 6102 (class class class)co 6879 ↦ cmpt2 6881 1c1 10226 + caddc 10228 / cdiv 10977 2c2 11367 ℤcz 11665 (,)cioo 12423 [,)cico 12425 ↑cexp 13113 topGenctg 16412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-iota 6065 df-fun 6104 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 |
This theorem is referenced by: dya2iocress 30851 dya2iocbrsiga 30852 dya2icoseg 30854 |
Copyright terms: Public domain | W3C validator |