Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icoseg Structured version   Visualization version   GIF version

Theorem dya2icoseg 34268
Description: For any point and any closed-below, open-above interval of centered on that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2icoseg.1 𝑁 = (⌊‘(1 − (2 logb 𝐷)))
Assertion
Ref Expression
dya2icoseg ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝐷,𝑏   𝐼,𝑏,𝑥   𝑁,𝑏,𝑥   𝑋,𝑏,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑛,𝑏)   𝑁(𝑛)   𝑋(𝑛)

Proof of Theorem dya2icoseg
StepHypRef Expression
1 dya2ioc.1 . . . . 5 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
2 ovex 7420 . . . . 5 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
31, 2fnmpoi 8049 . . . 4 𝐼 Fn (ℤ × ℤ)
43a1i 11 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐼 Fn (ℤ × ℤ))
5 simpl 482 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ℝ)
6 2rp 12956 . . . . . . 7 2 ∈ ℝ+
7 dya2icoseg.1 . . . . . . . 8 𝑁 = (⌊‘(1 − (2 logb 𝐷)))
8 1red 11175 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 1 ∈ ℝ)
9 2z 12565 . . . . . . . . . . . 12 2 ∈ ℤ
10 uzid 12808 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
119, 10ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
12 relogbzcl 26684 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝐷 ∈ ℝ+) → (2 logb 𝐷) ∈ ℝ)
1311, 12mpan 690 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → (2 logb 𝐷) ∈ ℝ)
148, 13resubcld 11606 . . . . . . . . 9 (𝐷 ∈ ℝ+ → (1 − (2 logb 𝐷)) ∈ ℝ)
1514flcld 13760 . . . . . . . 8 (𝐷 ∈ ℝ+ → (⌊‘(1 − (2 logb 𝐷))) ∈ ℤ)
167, 15eqeltrid 2832 . . . . . . 7 (𝐷 ∈ ℝ+𝑁 ∈ ℤ)
17 rpexpcl 14045 . . . . . . . 8 ((2 ∈ ℝ+𝑁 ∈ ℤ) → (2↑𝑁) ∈ ℝ+)
1817rpred 12995 . . . . . . 7 ((2 ∈ ℝ+𝑁 ∈ ℤ) → (2↑𝑁) ∈ ℝ)
196, 16, 18sylancr 587 . . . . . 6 (𝐷 ∈ ℝ+ → (2↑𝑁) ∈ ℝ)
2019adantl 481 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℝ)
215, 20remulcld 11204 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) ∈ ℝ)
2221flcld 13760 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ)
2316adantl 481 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑁 ∈ ℤ)
24 fnovrn 7564 . . 3 ((𝐼 Fn (ℤ × ℤ) ∧ (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼)
254, 22, 23, 24syl3anc 1373 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼)
2622zred 12638 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℝ)
276, 23, 17sylancr 587 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℝ+)
28 fllelt 13759 . . . . . . . 8 ((𝑋 · (2↑𝑁)) ∈ ℝ → ((⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)) ∧ (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1)))
2921, 28syl 17 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)) ∧ (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1)))
3029simpld 494 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)))
3126, 21, 27, 30lediv1dd 13053 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ ((𝑋 · (2↑𝑁)) / (2↑𝑁)))
325recnd 11202 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ℂ)
3320recnd 11202 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℂ)
34 2cnd 12264 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 2 ∈ ℂ)
35 2ne0 12290 . . . . . . . 8 2 ≠ 0
3635a1i 11 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 2 ≠ 0)
3734, 36, 23expne0d 14117 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ≠ 0)
3832, 33, 37divcan4d 11964 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) / (2↑𝑁)) = 𝑋)
3931, 38breqtrd 5133 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋)
40 1red 11175 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 1 ∈ ℝ)
4126, 40readdcld 11203 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) + 1) ∈ ℝ)
4229simprd 495 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1))
4321, 41, 27, 42ltdiv1dd 13052 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) / (2↑𝑁)) < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))
4438, 43eqbrtrrd 5131 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))
4526, 20, 37redivcld 12010 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∈ ℝ)
4641, 20, 37redivcld 12010 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ)
4746rexrd 11224 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ*)
48 elico2 13371 . . . . 5 ((((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∈ ℝ ∧ (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ*) → (𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ↔ (𝑋 ∈ ℝ ∧ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))))
4945, 47, 48syl2anc 584 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ↔ (𝑋 ∈ ℝ ∧ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))))
505, 39, 44, 49mpbir3and 1343 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
51 sxbrsiga.0 . . . . 5 𝐽 = (topGen‘ran (,))
5251, 1dya2iocival 34264 . . . 4 ((𝑁 ∈ ℤ ∧ (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) = (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
5323, 22, 52syl2anc 584 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) = (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
5450, 53eleqtrrd 2831 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁))
55 simpr 484 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
5655rpred 12995 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ)
575, 56resubcld 11606 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) ∈ ℝ)
5857rexrd 11224 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) ∈ ℝ*)
595, 56readdcld 11203 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + 𝐷) ∈ ℝ)
6059rexrd 11224 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + 𝐷) ∈ ℝ*)
6120, 37rereccld 12009 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑𝑁)) ∈ ℝ)
625, 61resubcld 11606 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 − (1 / (2↑𝑁))) ∈ ℝ)
637oveq2i 7398 . . . . . . . 8 (2↑𝑁) = (2↑(⌊‘(1 − (2 logb 𝐷))))
6463oveq2i 7398 . . . . . . 7 (1 / (2↑𝑁)) = (1 / (2↑(⌊‘(1 − (2 logb 𝐷)))))
65 dya2ub 34261 . . . . . . . 8 (𝐷 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝐷))))) < 𝐷)
6665adantl 481 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑(⌊‘(1 − (2 logb 𝐷))))) < 𝐷)
6764, 66eqbrtrid 5142 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑𝑁)) < 𝐷)
6861, 56, 5, 67ltsub2dd 11791 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) < (𝑋 − (1 / (2↑𝑁))))
6932, 33mulcld 11194 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) ∈ ℂ)
70 1cnd 11169 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 1 ∈ ℂ)
7169, 70, 33, 37divsubdird 11997 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) = (((𝑋 · (2↑𝑁)) / (2↑𝑁)) − (1 / (2↑𝑁))))
7238oveq1d 7402 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) / (2↑𝑁)) − (1 / (2↑𝑁))) = (𝑋 − (1 / (2↑𝑁))))
7371, 72eqtrd 2764 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) = (𝑋 − (1 / (2↑𝑁))))
7421, 40resubcld 11606 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) ∈ ℝ)
7521, 41, 40, 42ltsub1dd 11790 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) < (((⌊‘(𝑋 · (2↑𝑁))) + 1) − 1))
7626recnd 11202 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℂ)
7776, 70pncand 11534 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) − 1) = (⌊‘(𝑋 · (2↑𝑁))))
7875, 77breqtrd 5133 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) < (⌊‘(𝑋 · (2↑𝑁))))
7974, 26, 78ltled 11322 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) ≤ (⌊‘(𝑋 · (2↑𝑁))))
8074, 26, 27, 79lediv1dd 13053 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) ≤ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
8173, 80eqbrtrrd 5131 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 − (1 / (2↑𝑁))) ≤ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
8257, 62, 45, 68, 81ltletrd 11334 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) < ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
835, 61readdcld 11203 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + (1 / (2↑𝑁))) ∈ ℝ)
8421, 40readdcld 11203 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) + 1) ∈ ℝ)
8526, 21, 40, 30leadd1dd 11792 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) + 1) ≤ ((𝑋 · (2↑𝑁)) + 1))
8641, 84, 27, 85lediv1dd 13053 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)))
8769, 70, 33, 37divdird 11996 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)) = (((𝑋 · (2↑𝑁)) / (2↑𝑁)) + (1 / (2↑𝑁))))
8838oveq1d 7402 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) / (2↑𝑁)) + (1 / (2↑𝑁))) = (𝑋 + (1 / (2↑𝑁))))
8987, 88eqtrd 2764 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)) = (𝑋 + (1 / (2↑𝑁))))
9086, 89breqtrd 5133 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + (1 / (2↑𝑁))))
9161, 56, 5, 67ltadd2dd 11333 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + (1 / (2↑𝑁))) < (𝑋 + 𝐷))
9246, 83, 59, 90, 91lelttrd 11332 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) < (𝑋 + 𝐷))
9346, 59, 92ltled 11322 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + 𝐷))
94 icossioo 13401 . . . 4 ((((𝑋𝐷) ∈ ℝ* ∧ (𝑋 + 𝐷) ∈ ℝ*) ∧ ((𝑋𝐷) < ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∧ (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + 𝐷))) → (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
9558, 60, 82, 93, 94syl22anc 838 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
9653, 95eqsstrd 3981 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
97 eleq2 2817 . . . 4 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → (𝑋𝑏𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁)))
98 sseq1 3972 . . . 4 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → (𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)) ↔ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
9997, 98anbi12d 632 . . 3 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → ((𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))) ↔ (𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∧ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))))
10099rspcev 3588 . 2 ((((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼 ∧ (𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∧ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
10125, 54, 96, 100syl12anc 836 1 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3914   class class class wbr 5107   × cxp 5636  ran crn 5639   Fn wfn 6506  cfv 6511  (class class class)co 7387  cmpo 7389  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  cz 12529  cuz 12793  +crp 12951  (,)cioo 13306  [,)cico 13308  cfl 13752  cexp 14026  topGenctg 17400   logb clogb 26674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-logb 26675
This theorem is referenced by:  dya2icoseg2  34269
  Copyright terms: Public domain W3C validator