Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icoseg Structured version   Visualization version   GIF version

Theorem dya2icoseg 32223
Description: For any point and any closed-below, open-above interval of centered on that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2icoseg.1 𝑁 = (⌊‘(1 − (2 logb 𝐷)))
Assertion
Ref Expression
dya2icoseg ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝐷,𝑏   𝐼,𝑏,𝑥   𝑁,𝑏,𝑥   𝑋,𝑏,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑛,𝑏)   𝑁(𝑛)   𝑋(𝑛)

Proof of Theorem dya2icoseg
StepHypRef Expression
1 dya2ioc.1 . . . . 5 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
2 ovex 7301 . . . . 5 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
31, 2fnmpoi 7896 . . . 4 𝐼 Fn (ℤ × ℤ)
43a1i 11 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐼 Fn (ℤ × ℤ))
5 simpl 482 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ℝ)
6 2rp 12717 . . . . . . 7 2 ∈ ℝ+
7 dya2icoseg.1 . . . . . . . 8 𝑁 = (⌊‘(1 − (2 logb 𝐷)))
8 1red 10960 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 1 ∈ ℝ)
9 2z 12335 . . . . . . . . . . . 12 2 ∈ ℤ
10 uzid 12579 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
119, 10ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
12 relogbzcl 25905 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝐷 ∈ ℝ+) → (2 logb 𝐷) ∈ ℝ)
1311, 12mpan 686 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → (2 logb 𝐷) ∈ ℝ)
148, 13resubcld 11386 . . . . . . . . 9 (𝐷 ∈ ℝ+ → (1 − (2 logb 𝐷)) ∈ ℝ)
1514flcld 13499 . . . . . . . 8 (𝐷 ∈ ℝ+ → (⌊‘(1 − (2 logb 𝐷))) ∈ ℤ)
167, 15eqeltrid 2844 . . . . . . 7 (𝐷 ∈ ℝ+𝑁 ∈ ℤ)
17 rpexpcl 13782 . . . . . . . 8 ((2 ∈ ℝ+𝑁 ∈ ℤ) → (2↑𝑁) ∈ ℝ+)
1817rpred 12754 . . . . . . 7 ((2 ∈ ℝ+𝑁 ∈ ℤ) → (2↑𝑁) ∈ ℝ)
196, 16, 18sylancr 586 . . . . . 6 (𝐷 ∈ ℝ+ → (2↑𝑁) ∈ ℝ)
2019adantl 481 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℝ)
215, 20remulcld 10989 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) ∈ ℝ)
2221flcld 13499 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ)
2316adantl 481 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑁 ∈ ℤ)
24 fnovrn 7438 . . 3 ((𝐼 Fn (ℤ × ℤ) ∧ (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼)
254, 22, 23, 24syl3anc 1369 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼)
2622zred 12408 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℝ)
276, 23, 17sylancr 586 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℝ+)
28 fllelt 13498 . . . . . . . 8 ((𝑋 · (2↑𝑁)) ∈ ℝ → ((⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)) ∧ (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1)))
2921, 28syl 17 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)) ∧ (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1)))
3029simpld 494 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)))
3126, 21, 27, 30lediv1dd 12812 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ ((𝑋 · (2↑𝑁)) / (2↑𝑁)))
325recnd 10987 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ℂ)
3320recnd 10987 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℂ)
34 2cnd 12034 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 2 ∈ ℂ)
35 2ne0 12060 . . . . . . . 8 2 ≠ 0
3635a1i 11 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 2 ≠ 0)
3734, 36, 23expne0d 13851 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ≠ 0)
3832, 33, 37divcan4d 11740 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) / (2↑𝑁)) = 𝑋)
3931, 38breqtrd 5104 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋)
40 1red 10960 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 1 ∈ ℝ)
4126, 40readdcld 10988 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) + 1) ∈ ℝ)
4229simprd 495 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1))
4321, 41, 27, 42ltdiv1dd 12811 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) / (2↑𝑁)) < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))
4438, 43eqbrtrrd 5102 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))
4526, 20, 37redivcld 11786 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∈ ℝ)
4641, 20, 37redivcld 11786 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ)
4746rexrd 11009 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ*)
48 elico2 13125 . . . . 5 ((((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∈ ℝ ∧ (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ*) → (𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ↔ (𝑋 ∈ ℝ ∧ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))))
4945, 47, 48syl2anc 583 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ↔ (𝑋 ∈ ℝ ∧ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))))
505, 39, 44, 49mpbir3and 1340 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
51 sxbrsiga.0 . . . . 5 𝐽 = (topGen‘ran (,))
5251, 1dya2iocival 32219 . . . 4 ((𝑁 ∈ ℤ ∧ (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) = (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
5323, 22, 52syl2anc 583 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) = (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
5450, 53eleqtrrd 2843 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁))
55 simpr 484 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
5655rpred 12754 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ)
575, 56resubcld 11386 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) ∈ ℝ)
5857rexrd 11009 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) ∈ ℝ*)
595, 56readdcld 10988 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + 𝐷) ∈ ℝ)
6059rexrd 11009 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + 𝐷) ∈ ℝ*)
6120, 37rereccld 11785 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑𝑁)) ∈ ℝ)
625, 61resubcld 11386 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 − (1 / (2↑𝑁))) ∈ ℝ)
637oveq2i 7279 . . . . . . . 8 (2↑𝑁) = (2↑(⌊‘(1 − (2 logb 𝐷))))
6463oveq2i 7279 . . . . . . 7 (1 / (2↑𝑁)) = (1 / (2↑(⌊‘(1 − (2 logb 𝐷)))))
65 dya2ub 32216 . . . . . . . 8 (𝐷 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝐷))))) < 𝐷)
6665adantl 481 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑(⌊‘(1 − (2 logb 𝐷))))) < 𝐷)
6764, 66eqbrtrid 5113 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑𝑁)) < 𝐷)
6861, 56, 5, 67ltsub2dd 11571 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) < (𝑋 − (1 / (2↑𝑁))))
6932, 33mulcld 10979 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) ∈ ℂ)
70 1cnd 10954 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 1 ∈ ℂ)
7169, 70, 33, 37divsubdird 11773 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) = (((𝑋 · (2↑𝑁)) / (2↑𝑁)) − (1 / (2↑𝑁))))
7238oveq1d 7283 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) / (2↑𝑁)) − (1 / (2↑𝑁))) = (𝑋 − (1 / (2↑𝑁))))
7371, 72eqtrd 2779 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) = (𝑋 − (1 / (2↑𝑁))))
7421, 40resubcld 11386 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) ∈ ℝ)
7521, 41, 40, 42ltsub1dd 11570 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) < (((⌊‘(𝑋 · (2↑𝑁))) + 1) − 1))
7626recnd 10987 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℂ)
7776, 70pncand 11316 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) − 1) = (⌊‘(𝑋 · (2↑𝑁))))
7875, 77breqtrd 5104 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) < (⌊‘(𝑋 · (2↑𝑁))))
7974, 26, 78ltled 11106 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) ≤ (⌊‘(𝑋 · (2↑𝑁))))
8074, 26, 27, 79lediv1dd 12812 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) ≤ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
8173, 80eqbrtrrd 5102 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 − (1 / (2↑𝑁))) ≤ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
8257, 62, 45, 68, 81ltletrd 11118 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) < ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
835, 61readdcld 10988 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + (1 / (2↑𝑁))) ∈ ℝ)
8421, 40readdcld 10988 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) + 1) ∈ ℝ)
8526, 21, 40, 30leadd1dd 11572 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) + 1) ≤ ((𝑋 · (2↑𝑁)) + 1))
8641, 84, 27, 85lediv1dd 12812 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)))
8769, 70, 33, 37divdird 11772 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)) = (((𝑋 · (2↑𝑁)) / (2↑𝑁)) + (1 / (2↑𝑁))))
8838oveq1d 7283 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) / (2↑𝑁)) + (1 / (2↑𝑁))) = (𝑋 + (1 / (2↑𝑁))))
8987, 88eqtrd 2779 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)) = (𝑋 + (1 / (2↑𝑁))))
9086, 89breqtrd 5104 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + (1 / (2↑𝑁))))
9161, 56, 5, 67ltadd2dd 11117 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + (1 / (2↑𝑁))) < (𝑋 + 𝐷))
9246, 83, 59, 90, 91lelttrd 11116 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) < (𝑋 + 𝐷))
9346, 59, 92ltled 11106 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + 𝐷))
94 icossioo 13154 . . . 4 ((((𝑋𝐷) ∈ ℝ* ∧ (𝑋 + 𝐷) ∈ ℝ*) ∧ ((𝑋𝐷) < ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∧ (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + 𝐷))) → (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
9558, 60, 82, 93, 94syl22anc 835 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
9653, 95eqsstrd 3963 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
97 eleq2 2828 . . . 4 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → (𝑋𝑏𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁)))
98 sseq1 3950 . . . 4 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → (𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)) ↔ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
9997, 98anbi12d 630 . . 3 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → ((𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))) ↔ (𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∧ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))))
10099rspcev 3560 . 2 ((((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼 ∧ (𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∧ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
10125, 54, 96, 100syl12anc 833 1 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wrex 3066  wss 3891   class class class wbr 5078   × cxp 5586  ran crn 5589   Fn wfn 6425  cfv 6430  (class class class)co 7268  cmpo 7270  cr 10854  0cc0 10855  1c1 10856   + caddc 10858   · cmul 10860  *cxr 10992   < clt 10993  cle 10994  cmin 11188   / cdiv 11615  2c2 12011  cz 12302  cuz 12564  +crp 12712  (,)cioo 13061  [,)cico 13063  cfl 13491  cexp 13763  topGenctg 17129   logb clogb 25895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-map 8591  df-pm 8592  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-fi 9131  df-sup 9162  df-inf 9163  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ioo 13065  df-ioc 13066  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-fl 13493  df-mod 13571  df-seq 13703  df-exp 13764  df-fac 13969  df-bc 13998  df-hash 14026  df-shft 14759  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-limsup 15161  df-clim 15178  df-rlim 15179  df-sum 15379  df-ef 15758  df-sin 15760  df-cos 15761  df-pi 15763  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-hom 16967  df-cco 16968  df-rest 17114  df-topn 17115  df-0g 17133  df-gsum 17134  df-topgen 17135  df-pt 17136  df-prds 17139  df-xrs 17194  df-qtop 17199  df-imas 17200  df-xps 17202  df-mre 17276  df-mrc 17277  df-acs 17279  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-mulg 18682  df-cntz 18904  df-cmn 19369  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-fbas 20575  df-fg 20576  df-cnfld 20579  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-cld 22151  df-ntr 22152  df-cls 22153  df-nei 22230  df-lp 22268  df-perf 22269  df-cn 22359  df-cnp 22360  df-haus 22447  df-tx 22694  df-hmeo 22887  df-fil 22978  df-fm 23070  df-flim 23071  df-flf 23072  df-xms 23454  df-ms 23455  df-tms 23456  df-cncf 24022  df-limc 25011  df-dv 25012  df-log 25693  df-cxp 25694  df-logb 25896
This theorem is referenced by:  dya2icoseg2  32224
  Copyright terms: Public domain W3C validator