Proof of Theorem dya2icoseg
Step | Hyp | Ref
| Expression |
1 | | dya2ioc.1 |
. . . . 5
⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
2 | | ovex 7308 |
. . . . 5
⊢ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V |
3 | 1, 2 | fnmpoi 7910 |
. . . 4
⊢ 𝐼 Fn (ℤ ×
ℤ) |
4 | 3 | a1i 11 |
. . 3
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 𝐼 Fn (ℤ
× ℤ)) |
5 | | simpl 483 |
. . . . 5
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 𝑋 ∈
ℝ) |
6 | | 2rp 12735 |
. . . . . . 7
⊢ 2 ∈
ℝ+ |
7 | | dya2icoseg.1 |
. . . . . . . 8
⊢ 𝑁 = (⌊‘(1 − (2
logb 𝐷))) |
8 | | 1red 10976 |
. . . . . . . . . 10
⊢ (𝐷 ∈ ℝ+
→ 1 ∈ ℝ) |
9 | | 2z 12352 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
10 | | uzid 12597 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
11 | 9, 10 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 2 ∈
(ℤ≥‘2) |
12 | | relogbzcl 25924 |
. . . . . . . . . . 11
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝐷 ∈ ℝ+) → (2
logb 𝐷) ∈
ℝ) |
13 | 11, 12 | mpan 687 |
. . . . . . . . . 10
⊢ (𝐷 ∈ ℝ+
→ (2 logb 𝐷) ∈ ℝ) |
14 | 8, 13 | resubcld 11403 |
. . . . . . . . 9
⊢ (𝐷 ∈ ℝ+
→ (1 − (2 logb 𝐷)) ∈ ℝ) |
15 | 14 | flcld 13518 |
. . . . . . . 8
⊢ (𝐷 ∈ ℝ+
→ (⌊‘(1 − (2 logb 𝐷))) ∈ ℤ) |
16 | 7, 15 | eqeltrid 2843 |
. . . . . . 7
⊢ (𝐷 ∈ ℝ+
→ 𝑁 ∈
ℤ) |
17 | | rpexpcl 13801 |
. . . . . . . 8
⊢ ((2
∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (2↑𝑁) ∈
ℝ+) |
18 | 17 | rpred 12772 |
. . . . . . 7
⊢ ((2
∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (2↑𝑁) ∈
ℝ) |
19 | 6, 16, 18 | sylancr 587 |
. . . . . 6
⊢ (𝐷 ∈ ℝ+
→ (2↑𝑁) ∈
ℝ) |
20 | 19 | adantl 482 |
. . . . 5
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (2↑𝑁) ∈
ℝ) |
21 | 5, 20 | remulcld 11005 |
. . . 4
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑋 ·
(2↑𝑁)) ∈
ℝ) |
22 | 21 | flcld 13518 |
. . 3
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (⌊‘(𝑋
· (2↑𝑁)))
∈ ℤ) |
23 | 16 | adantl 482 |
. . 3
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 𝑁 ∈
ℤ) |
24 | | fnovrn 7447 |
. . 3
⊢ ((𝐼 Fn (ℤ × ℤ)
∧ (⌊‘(𝑋
· (2↑𝑁)))
∈ ℤ ∧ 𝑁
∈ ℤ) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼) |
25 | 4, 22, 23, 24 | syl3anc 1370 |
. 2
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((⌊‘(𝑋
· (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼) |
26 | 22 | zred 12426 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (⌊‘(𝑋
· (2↑𝑁)))
∈ ℝ) |
27 | 6, 23, 17 | sylancr 587 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (2↑𝑁) ∈
ℝ+) |
28 | | fllelt 13517 |
. . . . . . . 8
⊢ ((𝑋 · (2↑𝑁)) ∈ ℝ →
((⌊‘(𝑋 ·
(2↑𝑁))) ≤ (𝑋 · (2↑𝑁)) ∧ (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1))) |
29 | 21, 28 | syl 17 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((⌊‘(𝑋
· (2↑𝑁))) ≤
(𝑋 · (2↑𝑁)) ∧ (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1))) |
30 | 29 | simpld 495 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (⌊‘(𝑋
· (2↑𝑁))) ≤
(𝑋 · (2↑𝑁))) |
31 | 26, 21, 27, 30 | lediv1dd 12830 |
. . . . 5
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((⌊‘(𝑋
· (2↑𝑁))) /
(2↑𝑁)) ≤ ((𝑋 · (2↑𝑁)) / (2↑𝑁))) |
32 | 5 | recnd 11003 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 𝑋 ∈
ℂ) |
33 | 20 | recnd 11003 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (2↑𝑁) ∈
ℂ) |
34 | | 2cnd 12051 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 2 ∈ ℂ) |
35 | | 2ne0 12077 |
. . . . . . . 8
⊢ 2 ≠
0 |
36 | 35 | a1i 11 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 2 ≠ 0) |
37 | 34, 36, 23 | expne0d 13870 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (2↑𝑁) ≠
0) |
38 | 32, 33, 37 | divcan4d 11757 |
. . . . 5
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((𝑋 ·
(2↑𝑁)) / (2↑𝑁)) = 𝑋) |
39 | 31, 38 | breqtrd 5100 |
. . . 4
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((⌊‘(𝑋
· (2↑𝑁))) /
(2↑𝑁)) ≤ 𝑋) |
40 | | 1red 10976 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 1 ∈ ℝ) |
41 | 26, 40 | readdcld 11004 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((⌊‘(𝑋
· (2↑𝑁))) + 1)
∈ ℝ) |
42 | 29 | simprd 496 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑋 ·
(2↑𝑁)) <
((⌊‘(𝑋 ·
(2↑𝑁))) +
1)) |
43 | 21, 41, 27, 42 | ltdiv1dd 12829 |
. . . . 5
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((𝑋 ·
(2↑𝑁)) / (2↑𝑁)) < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) |
44 | 38, 43 | eqbrtrrd 5098 |
. . . 4
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 𝑋 <
(((⌊‘(𝑋
· (2↑𝑁))) + 1)
/ (2↑𝑁))) |
45 | 26, 20, 37 | redivcld 11803 |
. . . . 5
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((⌊‘(𝑋
· (2↑𝑁))) /
(2↑𝑁)) ∈
ℝ) |
46 | 41, 20, 37 | redivcld 11803 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((⌊‘(𝑋
· (2↑𝑁))) + 1)
/ (2↑𝑁)) ∈
ℝ) |
47 | 46 | rexrd 11025 |
. . . . 5
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((⌊‘(𝑋
· (2↑𝑁))) + 1)
/ (2↑𝑁)) ∈
ℝ*) |
48 | | elico2 13143 |
. . . . 5
⊢
((((⌊‘(𝑋
· (2↑𝑁))) /
(2↑𝑁)) ∈ ℝ
∧ (((⌊‘(𝑋
· (2↑𝑁))) + 1)
/ (2↑𝑁)) ∈
ℝ*) → (𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ↔ (𝑋 ∈ ℝ ∧ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋 ∧ 𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))) |
49 | 45, 47, 48 | syl2anc 584 |
. . . 4
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑋 ∈
(((⌊‘(𝑋
· (2↑𝑁))) /
(2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ↔ (𝑋 ∈ ℝ ∧ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋 ∧ 𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))) |
50 | 5, 39, 44, 49 | mpbir3and 1341 |
. . 3
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 𝑋 ∈
(((⌊‘(𝑋
· (2↑𝑁))) /
(2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))) |
51 | | sxbrsiga.0 |
. . . . 5
⊢ 𝐽 = (topGen‘ran
(,)) |
52 | 51, 1 | dya2iocival 32240 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧
(⌊‘(𝑋 ·
(2↑𝑁))) ∈
ℤ) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) = (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))) |
53 | 23, 22, 52 | syl2anc 584 |
. . 3
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((⌊‘(𝑋
· (2↑𝑁)))𝐼𝑁) = (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))) |
54 | 50, 53 | eleqtrrd 2842 |
. 2
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 𝑋 ∈
((⌊‘(𝑋 ·
(2↑𝑁)))𝐼𝑁)) |
55 | | simpr 485 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 𝐷 ∈
ℝ+) |
56 | 55 | rpred 12772 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 𝐷 ∈
ℝ) |
57 | 5, 56 | resubcld 11403 |
. . . . 5
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑋 − 𝐷) ∈
ℝ) |
58 | 57 | rexrd 11025 |
. . . 4
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑋 − 𝐷) ∈
ℝ*) |
59 | 5, 56 | readdcld 11004 |
. . . . 5
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑋 + 𝐷) ∈
ℝ) |
60 | 59 | rexrd 11025 |
. . . 4
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑋 + 𝐷) ∈
ℝ*) |
61 | 20, 37 | rereccld 11802 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (1 / (2↑𝑁))
∈ ℝ) |
62 | 5, 61 | resubcld 11403 |
. . . . 5
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑋 − (1 /
(2↑𝑁))) ∈
ℝ) |
63 | 7 | oveq2i 7286 |
. . . . . . . 8
⊢
(2↑𝑁) =
(2↑(⌊‘(1 − (2 logb 𝐷)))) |
64 | 63 | oveq2i 7286 |
. . . . . . 7
⊢ (1 /
(2↑𝑁)) = (1 /
(2↑(⌊‘(1 − (2 logb 𝐷))))) |
65 | | dya2ub 32237 |
. . . . . . . 8
⊢ (𝐷 ∈ ℝ+
→ (1 / (2↑(⌊‘(1 − (2 logb 𝐷))))) < 𝐷) |
66 | 65 | adantl 482 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (1 / (2↑(⌊‘(1 − (2 logb 𝐷))))) < 𝐷) |
67 | 64, 66 | eqbrtrid 5109 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (1 / (2↑𝑁))
< 𝐷) |
68 | 61, 56, 5, 67 | ltsub2dd 11588 |
. . . . 5
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑋 − 𝐷) < (𝑋 − (1 / (2↑𝑁)))) |
69 | 32, 33 | mulcld 10995 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑋 ·
(2↑𝑁)) ∈
ℂ) |
70 | | 1cnd 10970 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 1 ∈ ℂ) |
71 | 69, 70, 33, 37 | divsubdird 11790 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((𝑋 ·
(2↑𝑁)) − 1) /
(2↑𝑁)) = (((𝑋 · (2↑𝑁)) / (2↑𝑁)) − (1 / (2↑𝑁)))) |
72 | 38 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((𝑋 ·
(2↑𝑁)) / (2↑𝑁)) − (1 / (2↑𝑁))) = (𝑋 − (1 / (2↑𝑁)))) |
73 | 71, 72 | eqtrd 2778 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((𝑋 ·
(2↑𝑁)) − 1) /
(2↑𝑁)) = (𝑋 − (1 / (2↑𝑁)))) |
74 | 21, 40 | resubcld 11403 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((𝑋 ·
(2↑𝑁)) − 1)
∈ ℝ) |
75 | 21, 41, 40, 42 | ltsub1dd 11587 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((𝑋 ·
(2↑𝑁)) − 1) <
(((⌊‘(𝑋
· (2↑𝑁))) + 1)
− 1)) |
76 | 26 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (⌊‘(𝑋
· (2↑𝑁)))
∈ ℂ) |
77 | 76, 70 | pncand 11333 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((⌊‘(𝑋
· (2↑𝑁))) + 1)
− 1) = (⌊‘(𝑋 · (2↑𝑁)))) |
78 | 75, 77 | breqtrd 5100 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((𝑋 ·
(2↑𝑁)) − 1) <
(⌊‘(𝑋 ·
(2↑𝑁)))) |
79 | 74, 26, 78 | ltled 11123 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((𝑋 ·
(2↑𝑁)) − 1) ≤
(⌊‘(𝑋 ·
(2↑𝑁)))) |
80 | 74, 26, 27, 79 | lediv1dd 12830 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((𝑋 ·
(2↑𝑁)) − 1) /
(2↑𝑁)) ≤
((⌊‘(𝑋 ·
(2↑𝑁))) /
(2↑𝑁))) |
81 | 73, 80 | eqbrtrrd 5098 |
. . . . 5
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑋 − (1 /
(2↑𝑁))) ≤
((⌊‘(𝑋 ·
(2↑𝑁))) /
(2↑𝑁))) |
82 | 57, 62, 45, 68, 81 | ltletrd 11135 |
. . . 4
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑋 − 𝐷) < ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))) |
83 | 5, 61 | readdcld 11004 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑋 + (1 /
(2↑𝑁))) ∈
ℝ) |
84 | 21, 40 | readdcld 11004 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((𝑋 ·
(2↑𝑁)) + 1) ∈
ℝ) |
85 | 26, 21, 40, 30 | leadd1dd 11589 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((⌊‘(𝑋
· (2↑𝑁))) + 1)
≤ ((𝑋 ·
(2↑𝑁)) +
1)) |
86 | 41, 84, 27, 85 | lediv1dd 12830 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((⌊‘(𝑋
· (2↑𝑁))) + 1)
/ (2↑𝑁)) ≤ (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁))) |
87 | 69, 70, 33, 37 | divdird 11789 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((𝑋 ·
(2↑𝑁)) + 1) /
(2↑𝑁)) = (((𝑋 · (2↑𝑁)) / (2↑𝑁)) + (1 / (2↑𝑁)))) |
88 | 38 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((𝑋 ·
(2↑𝑁)) / (2↑𝑁)) + (1 / (2↑𝑁))) = (𝑋 + (1 / (2↑𝑁)))) |
89 | 87, 88 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((𝑋 ·
(2↑𝑁)) + 1) /
(2↑𝑁)) = (𝑋 + (1 / (2↑𝑁)))) |
90 | 86, 89 | breqtrd 5100 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((⌊‘(𝑋
· (2↑𝑁))) + 1)
/ (2↑𝑁)) ≤ (𝑋 + (1 / (2↑𝑁)))) |
91 | 61, 56, 5, 67 | ltadd2dd 11134 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑋 + (1 /
(2↑𝑁))) < (𝑋 + 𝐷)) |
92 | 46, 83, 59, 90, 91 | lelttrd 11133 |
. . . . 5
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((⌊‘(𝑋
· (2↑𝑁))) + 1)
/ (2↑𝑁)) < (𝑋 + 𝐷)) |
93 | 46, 59, 92 | ltled 11123 |
. . . 4
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((⌊‘(𝑋
· (2↑𝑁))) + 1)
/ (2↑𝑁)) ≤ (𝑋 + 𝐷)) |
94 | | icossioo 13172 |
. . . 4
⊢ ((((𝑋 − 𝐷) ∈ ℝ* ∧ (𝑋 + 𝐷) ∈ ℝ*) ∧ ((𝑋 − 𝐷) < ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∧ (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + 𝐷))) → (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ⊆ ((𝑋 − 𝐷)(,)(𝑋 + 𝐷))) |
95 | 58, 60, 82, 93, 94 | syl22anc 836 |
. . 3
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (((⌊‘(𝑋
· (2↑𝑁))) /
(2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ⊆ ((𝑋 − 𝐷)(,)(𝑋 + 𝐷))) |
96 | 53, 95 | eqsstrd 3959 |
. 2
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ((⌊‘(𝑋
· (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋 − 𝐷)(,)(𝑋 + 𝐷))) |
97 | | eleq2 2827 |
. . . 4
⊢ (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → (𝑋 ∈ 𝑏 ↔ 𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁))) |
98 | | sseq1 3946 |
. . . 4
⊢ (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → (𝑏 ⊆ ((𝑋 − 𝐷)(,)(𝑋 + 𝐷)) ↔ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋 − 𝐷)(,)(𝑋 + 𝐷)))) |
99 | 97, 98 | anbi12d 631 |
. . 3
⊢ (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → ((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ ((𝑋 − 𝐷)(,)(𝑋 + 𝐷))) ↔ (𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∧ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋 − 𝐷)(,)(𝑋 + 𝐷))))) |
100 | 99 | rspcev 3561 |
. 2
⊢
((((⌊‘(𝑋
· (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼 ∧ (𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∧ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋 − 𝐷)(,)(𝑋 + 𝐷)))) → ∃𝑏 ∈ ran 𝐼(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ ((𝑋 − 𝐷)(,)(𝑋 + 𝐷)))) |
101 | 25, 54, 96, 100 | syl12anc 834 |
1
⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ ∃𝑏 ∈ ran
𝐼(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ ((𝑋 − 𝐷)(,)(𝑋 + 𝐷)))) |