Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icoseg Structured version   Visualization version   GIF version

Theorem dya2icoseg 32144
Description: For any point and any closed-below, open-above interval of centered on that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2icoseg.1 𝑁 = (⌊‘(1 − (2 logb 𝐷)))
Assertion
Ref Expression
dya2icoseg ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝐷,𝑏   𝐼,𝑏,𝑥   𝑁,𝑏,𝑥   𝑋,𝑏,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑛,𝑏)   𝑁(𝑛)   𝑋(𝑛)

Proof of Theorem dya2icoseg
StepHypRef Expression
1 dya2ioc.1 . . . . 5 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
2 ovex 7288 . . . . 5 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
31, 2fnmpoi 7883 . . . 4 𝐼 Fn (ℤ × ℤ)
43a1i 11 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐼 Fn (ℤ × ℤ))
5 simpl 482 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ℝ)
6 2rp 12664 . . . . . . 7 2 ∈ ℝ+
7 dya2icoseg.1 . . . . . . . 8 𝑁 = (⌊‘(1 − (2 logb 𝐷)))
8 1red 10907 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 1 ∈ ℝ)
9 2z 12282 . . . . . . . . . . . 12 2 ∈ ℤ
10 uzid 12526 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
119, 10ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
12 relogbzcl 25829 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝐷 ∈ ℝ+) → (2 logb 𝐷) ∈ ℝ)
1311, 12mpan 686 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → (2 logb 𝐷) ∈ ℝ)
148, 13resubcld 11333 . . . . . . . . 9 (𝐷 ∈ ℝ+ → (1 − (2 logb 𝐷)) ∈ ℝ)
1514flcld 13446 . . . . . . . 8 (𝐷 ∈ ℝ+ → (⌊‘(1 − (2 logb 𝐷))) ∈ ℤ)
167, 15eqeltrid 2843 . . . . . . 7 (𝐷 ∈ ℝ+𝑁 ∈ ℤ)
17 rpexpcl 13729 . . . . . . . 8 ((2 ∈ ℝ+𝑁 ∈ ℤ) → (2↑𝑁) ∈ ℝ+)
1817rpred 12701 . . . . . . 7 ((2 ∈ ℝ+𝑁 ∈ ℤ) → (2↑𝑁) ∈ ℝ)
196, 16, 18sylancr 586 . . . . . 6 (𝐷 ∈ ℝ+ → (2↑𝑁) ∈ ℝ)
2019adantl 481 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℝ)
215, 20remulcld 10936 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) ∈ ℝ)
2221flcld 13446 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ)
2316adantl 481 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑁 ∈ ℤ)
24 fnovrn 7425 . . 3 ((𝐼 Fn (ℤ × ℤ) ∧ (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼)
254, 22, 23, 24syl3anc 1369 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼)
2622zred 12355 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℝ)
276, 23, 17sylancr 586 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℝ+)
28 fllelt 13445 . . . . . . . 8 ((𝑋 · (2↑𝑁)) ∈ ℝ → ((⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)) ∧ (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1)))
2921, 28syl 17 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)) ∧ (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1)))
3029simpld 494 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)))
3126, 21, 27, 30lediv1dd 12759 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ ((𝑋 · (2↑𝑁)) / (2↑𝑁)))
325recnd 10934 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ℂ)
3320recnd 10934 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℂ)
34 2cnd 11981 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 2 ∈ ℂ)
35 2ne0 12007 . . . . . . . 8 2 ≠ 0
3635a1i 11 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 2 ≠ 0)
3734, 36, 23expne0d 13798 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ≠ 0)
3832, 33, 37divcan4d 11687 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) / (2↑𝑁)) = 𝑋)
3931, 38breqtrd 5096 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋)
40 1red 10907 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 1 ∈ ℝ)
4126, 40readdcld 10935 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) + 1) ∈ ℝ)
4229simprd 495 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1))
4321, 41, 27, 42ltdiv1dd 12758 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) / (2↑𝑁)) < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))
4438, 43eqbrtrrd 5094 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))
4526, 20, 37redivcld 11733 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∈ ℝ)
4641, 20, 37redivcld 11733 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ)
4746rexrd 10956 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ*)
48 elico2 13072 . . . . 5 ((((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∈ ℝ ∧ (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ*) → (𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ↔ (𝑋 ∈ ℝ ∧ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))))
4945, 47, 48syl2anc 583 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ↔ (𝑋 ∈ ℝ ∧ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))))
505, 39, 44, 49mpbir3and 1340 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
51 sxbrsiga.0 . . . . 5 𝐽 = (topGen‘ran (,))
5251, 1dya2iocival 32140 . . . 4 ((𝑁 ∈ ℤ ∧ (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) = (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
5323, 22, 52syl2anc 583 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) = (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
5450, 53eleqtrrd 2842 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁))
55 simpr 484 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
5655rpred 12701 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ)
575, 56resubcld 11333 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) ∈ ℝ)
5857rexrd 10956 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) ∈ ℝ*)
595, 56readdcld 10935 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + 𝐷) ∈ ℝ)
6059rexrd 10956 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + 𝐷) ∈ ℝ*)
6120, 37rereccld 11732 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑𝑁)) ∈ ℝ)
625, 61resubcld 11333 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 − (1 / (2↑𝑁))) ∈ ℝ)
637oveq2i 7266 . . . . . . . 8 (2↑𝑁) = (2↑(⌊‘(1 − (2 logb 𝐷))))
6463oveq2i 7266 . . . . . . 7 (1 / (2↑𝑁)) = (1 / (2↑(⌊‘(1 − (2 logb 𝐷)))))
65 dya2ub 32137 . . . . . . . 8 (𝐷 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝐷))))) < 𝐷)
6665adantl 481 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑(⌊‘(1 − (2 logb 𝐷))))) < 𝐷)
6764, 66eqbrtrid 5105 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑𝑁)) < 𝐷)
6861, 56, 5, 67ltsub2dd 11518 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) < (𝑋 − (1 / (2↑𝑁))))
6932, 33mulcld 10926 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) ∈ ℂ)
70 1cnd 10901 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 1 ∈ ℂ)
7169, 70, 33, 37divsubdird 11720 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) = (((𝑋 · (2↑𝑁)) / (2↑𝑁)) − (1 / (2↑𝑁))))
7238oveq1d 7270 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) / (2↑𝑁)) − (1 / (2↑𝑁))) = (𝑋 − (1 / (2↑𝑁))))
7371, 72eqtrd 2778 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) = (𝑋 − (1 / (2↑𝑁))))
7421, 40resubcld 11333 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) ∈ ℝ)
7521, 41, 40, 42ltsub1dd 11517 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) < (((⌊‘(𝑋 · (2↑𝑁))) + 1) − 1))
7626recnd 10934 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℂ)
7776, 70pncand 11263 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) − 1) = (⌊‘(𝑋 · (2↑𝑁))))
7875, 77breqtrd 5096 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) < (⌊‘(𝑋 · (2↑𝑁))))
7974, 26, 78ltled 11053 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) ≤ (⌊‘(𝑋 · (2↑𝑁))))
8074, 26, 27, 79lediv1dd 12759 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) ≤ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
8173, 80eqbrtrrd 5094 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 − (1 / (2↑𝑁))) ≤ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
8257, 62, 45, 68, 81ltletrd 11065 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) < ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
835, 61readdcld 10935 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + (1 / (2↑𝑁))) ∈ ℝ)
8421, 40readdcld 10935 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) + 1) ∈ ℝ)
8526, 21, 40, 30leadd1dd 11519 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) + 1) ≤ ((𝑋 · (2↑𝑁)) + 1))
8641, 84, 27, 85lediv1dd 12759 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)))
8769, 70, 33, 37divdird 11719 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)) = (((𝑋 · (2↑𝑁)) / (2↑𝑁)) + (1 / (2↑𝑁))))
8838oveq1d 7270 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) / (2↑𝑁)) + (1 / (2↑𝑁))) = (𝑋 + (1 / (2↑𝑁))))
8987, 88eqtrd 2778 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)) = (𝑋 + (1 / (2↑𝑁))))
9086, 89breqtrd 5096 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + (1 / (2↑𝑁))))
9161, 56, 5, 67ltadd2dd 11064 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + (1 / (2↑𝑁))) < (𝑋 + 𝐷))
9246, 83, 59, 90, 91lelttrd 11063 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) < (𝑋 + 𝐷))
9346, 59, 92ltled 11053 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + 𝐷))
94 icossioo 13101 . . . 4 ((((𝑋𝐷) ∈ ℝ* ∧ (𝑋 + 𝐷) ∈ ℝ*) ∧ ((𝑋𝐷) < ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∧ (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + 𝐷))) → (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
9558, 60, 82, 93, 94syl22anc 835 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
9653, 95eqsstrd 3955 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
97 eleq2 2827 . . . 4 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → (𝑋𝑏𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁)))
98 sseq1 3942 . . . 4 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → (𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)) ↔ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
9997, 98anbi12d 630 . . 3 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → ((𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))) ↔ (𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∧ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))))
10099rspcev 3552 . 2 ((((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼 ∧ (𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∧ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
10125, 54, 96, 100syl12anc 833 1 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  wss 3883   class class class wbr 5070   × cxp 5578  ran crn 5581   Fn wfn 6413  cfv 6418  (class class class)co 7255  cmpo 7257  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  cz 12249  cuz 12511  +crp 12659  (,)cioo 13008  [,)cico 13010  cfl 13438  cexp 13710  topGenctg 17065   logb clogb 25819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618  df-logb 25820
This theorem is referenced by:  dya2icoseg2  32145
  Copyright terms: Public domain W3C validator