Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocress Structured version   Visualization version   GIF version

Theorem dya2iocress 32141
Description: Dyadic intervals are subsets of . (Contributed by Thierry Arnoux, 18-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
Assertion
Ref Expression
dya2iocress ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ⊆ ℝ)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐼(𝑥,𝑛)   𝐽(𝑥,𝑛)   𝑁(𝑥,𝑛)   𝑋(𝑥,𝑛)

Proof of Theorem dya2iocress
StepHypRef Expression
1 sxbrsiga.0 . . 3 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . 3 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
31, 2dya2iocival 32140 . 2 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))))
4 simpr 484 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℤ)
54zred 12355 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℝ)
6 2rp 12664 . . . . . 6 2 ∈ ℝ+
76a1i 11 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 2 ∈ ℝ+)
8 simpl 482 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑁 ∈ ℤ)
97, 8rpexpcld 13890 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (2↑𝑁) ∈ ℝ+)
105, 9rerpdivcld 12732 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 / (2↑𝑁)) ∈ ℝ)
11 1red 10907 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 1 ∈ ℝ)
125, 11readdcld 10935 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 + 1) ∈ ℝ)
1312, 9rerpdivcld 12732 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ)
1413rexrd 10956 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ*)
15 icossre 13089 . . 3 (((𝑋 / (2↑𝑁)) ∈ ℝ ∧ ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ*) → ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ⊆ ℝ)
1610, 14, 15syl2anc 583 . 2 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ⊆ ℝ)
173, 16eqsstrd 3955 1 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883  ran crn 5581  cfv 6418  (class class class)co 7255  cmpo 7257  cr 10801  1c1 10803   + caddc 10805  *cxr 10939   / cdiv 11562  2c2 11958  cz 12249  +crp 12659  (,)cioo 13008  [,)cico 13010  cexp 13710  topGenctg 17065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-seq 13650  df-exp 13711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator