![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocress | Structured version Visualization version GIF version |
Description: Dyadic intervals are subsets of β. (Contributed by Thierry Arnoux, 18-Sep-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | β’ π½ = (topGenβran (,)) |
dya2ioc.1 | β’ πΌ = (π₯ β β€, π β β€ β¦ ((π₯ / (2βπ))[,)((π₯ + 1) / (2βπ)))) |
Ref | Expression |
---|---|
dya2iocress | β’ ((π β β€ β§ π β β€) β (ππΌπ) β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sxbrsiga.0 | . . 3 β’ π½ = (topGenβran (,)) | |
2 | dya2ioc.1 | . . 3 β’ πΌ = (π₯ β β€, π β β€ β¦ ((π₯ / (2βπ))[,)((π₯ + 1) / (2βπ)))) | |
3 | 1, 2 | dya2iocival 33761 | . 2 β’ ((π β β€ β§ π β β€) β (ππΌπ) = ((π / (2βπ))[,)((π + 1) / (2βπ)))) |
4 | simpr 484 | . . . . 5 β’ ((π β β€ β§ π β β€) β π β β€) | |
5 | 4 | zred 12663 | . . . 4 β’ ((π β β€ β§ π β β€) β π β β) |
6 | 2rp 12976 | . . . . . 6 β’ 2 β β+ | |
7 | 6 | a1i 11 | . . . . 5 β’ ((π β β€ β§ π β β€) β 2 β β+) |
8 | simpl 482 | . . . . 5 β’ ((π β β€ β§ π β β€) β π β β€) | |
9 | 7, 8 | rpexpcld 14207 | . . . 4 β’ ((π β β€ β§ π β β€) β (2βπ) β β+) |
10 | 5, 9 | rerpdivcld 13044 | . . 3 β’ ((π β β€ β§ π β β€) β (π / (2βπ)) β β) |
11 | 1red 11212 | . . . . . 6 β’ ((π β β€ β§ π β β€) β 1 β β) | |
12 | 5, 11 | readdcld 11240 | . . . . 5 β’ ((π β β€ β§ π β β€) β (π + 1) β β) |
13 | 12, 9 | rerpdivcld 13044 | . . . 4 β’ ((π β β€ β§ π β β€) β ((π + 1) / (2βπ)) β β) |
14 | 13 | rexrd 11261 | . . 3 β’ ((π β β€ β§ π β β€) β ((π + 1) / (2βπ)) β β*) |
15 | icossre 13402 | . . 3 β’ (((π / (2βπ)) β β β§ ((π + 1) / (2βπ)) β β*) β ((π / (2βπ))[,)((π + 1) / (2βπ))) β β) | |
16 | 10, 14, 15 | syl2anc 583 | . 2 β’ ((π β β€ β§ π β β€) β ((π / (2βπ))[,)((π + 1) / (2βπ))) β β) |
17 | 3, 16 | eqsstrd 4012 | 1 β’ ((π β β€ β§ π β β€) β (ππΌπ) β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wss 3940 ran crn 5667 βcfv 6533 (class class class)co 7401 β cmpo 7403 βcr 11105 1c1 11107 + caddc 11109 β*cxr 11244 / cdiv 11868 2c2 12264 β€cz 12555 β+crp 12971 (,)cioo 13321 [,)cico 13323 βcexp 14024 topGenctg 17382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-ico 13327 df-seq 13964 df-exp 14025 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |