Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocress Structured version   Visualization version   GIF version

Theorem dya2iocress 34108
Description: Dyadic intervals are subsets of . (Contributed by Thierry Arnoux, 18-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
Assertion
Ref Expression
dya2iocress ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ⊆ ℝ)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐼(𝑥,𝑛)   𝐽(𝑥,𝑛)   𝑁(𝑥,𝑛)   𝑋(𝑥,𝑛)

Proof of Theorem dya2iocress
StepHypRef Expression
1 sxbrsiga.0 . . 3 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . 3 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
31, 2dya2iocival 34107 . 2 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))))
4 simpr 483 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℤ)
54zred 12718 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℝ)
6 2rp 13033 . . . . . 6 2 ∈ ℝ+
76a1i 11 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 2 ∈ ℝ+)
8 simpl 481 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑁 ∈ ℤ)
97, 8rpexpcld 14264 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (2↑𝑁) ∈ ℝ+)
105, 9rerpdivcld 13101 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 / (2↑𝑁)) ∈ ℝ)
11 1red 11265 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 1 ∈ ℝ)
125, 11readdcld 11293 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 + 1) ∈ ℝ)
1312, 9rerpdivcld 13101 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ)
1413rexrd 11314 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ*)
15 icossre 13459 . . 3 (((𝑋 / (2↑𝑁)) ∈ ℝ ∧ ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ*) → ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ⊆ ℝ)
1610, 14, 15syl2anc 582 . 2 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ⊆ ℝ)
173, 16eqsstrd 4018 1 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wss 3947  ran crn 5683  cfv 6554  (class class class)co 7424  cmpo 7426  cr 11157  1c1 11159   + caddc 11161  *cxr 11297   / cdiv 11921  2c2 12319  cz 12610  +crp 13028  (,)cioo 13378  [,)cico 13380  cexp 14081  topGenctg 17452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-ico 13384  df-seq 14022  df-exp 14082
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator