Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgredgiedgb | Structured version Visualization version GIF version |
Description: In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) |
Ref | Expression |
---|---|
uhgredgiedgb.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgredgiedgb | ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgredgiedgb.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | uhgrfun 27434 | . 2 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
3 | 1 | edgiedgb 27422 | . 2 ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
4 | 2, 3 | syl 17 | 1 ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2110 ∃wrex 3067 dom cdm 5590 Fun wfun 6426 ‘cfv 6432 iEdgciedg 27365 Edgcedg 27415 UHGraphcuhgr 27424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-edg 27416 df-uhgr 27426 |
This theorem is referenced by: usgredg2vtxeuALT 27587 vtxduhgr0nedg 27857 umgr2wlk 28310 1pthon2v 28513 uhgr3cyclex 28542 |
Copyright terms: Public domain | W3C validator |