MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgredgiedgb Structured version   Visualization version   GIF version

Theorem uhgredgiedgb 27494
Description: In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.)
Hypothesis
Ref Expression
uhgredgiedgb.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgredgiedgb (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐼
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem uhgredgiedgb
StepHypRef Expression
1 uhgredgiedgb.i . . 3 𝐼 = (iEdg‘𝐺)
21uhgrfun 27434 . 2 (𝐺 ∈ UHGraph → Fun 𝐼)
31edgiedgb 27422 . 2 (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
42, 3syl 17 1 (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2110  wrex 3067  dom cdm 5590  Fun wfun 6426  cfv 6432  iEdgciedg 27365  Edgcedg 27415  UHGraphcuhgr 27424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fv 6440  df-edg 27416  df-uhgr 27426
This theorem is referenced by:  usgredg2vtxeuALT  27587  vtxduhgr0nedg  27857  umgr2wlk  28310  1pthon2v  28513  uhgr3cyclex  28542
  Copyright terms: Public domain W3C validator