| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgredgiedgb | Structured version Visualization version GIF version | ||
| Description: In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) |
| Ref | Expression |
|---|---|
| uhgredgiedgb.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgredgiedgb | ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgredgiedgb.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | uhgrfun 29050 | . 2 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 3 | 1 | edgiedgb 29038 | . 2 ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 dom cdm 5659 Fun wfun 6530 ‘cfv 6536 iEdgciedg 28981 Edgcedg 29031 UHGraphcuhgr 29040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-edg 29032 df-uhgr 29042 |
| This theorem is referenced by: usgredg2vtxeuALT 29206 vtxduhgr0nedg 29477 umgr2wlk 29936 1pthon2v 30139 uhgr3cyclex 30168 isuspgrim0 47874 clnbgrgrimlem 47913 clnbgrgrim 47914 grimedg 47915 |
| Copyright terms: Public domain | W3C validator |