MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgredgiedgb Structured version   Visualization version   GIF version

Theorem uhgredgiedgb 29060
Description: In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.)
Hypothesis
Ref Expression
uhgredgiedgb.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgredgiedgb (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐼
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem uhgredgiedgb
StepHypRef Expression
1 uhgredgiedgb.i . . 3 𝐼 = (iEdg‘𝐺)
21uhgrfun 29000 . 2 (𝐺 ∈ UHGraph → Fun 𝐼)
31edgiedgb 28988 . 2 (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
42, 3syl 17 1 (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3054  dom cdm 5641  Fun wfun 6508  cfv 6514  iEdgciedg 28931  Edgcedg 28981  UHGraphcuhgr 28990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-edg 28982  df-uhgr 28992
This theorem is referenced by:  usgredg2vtxeuALT  29156  vtxduhgr0nedg  29427  umgr2wlk  29886  1pthon2v  30089  uhgr3cyclex  30118  isuspgrim0  47898  clnbgrgrimlem  47937  clnbgrgrim  47938  grimedg  47939
  Copyright terms: Public domain W3C validator