| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgredgiedgb | Structured version Visualization version GIF version | ||
| Description: In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) |
| Ref | Expression |
|---|---|
| uhgredgiedgb.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgredgiedgb | ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgredgiedgb.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | uhgrfun 29037 | . 2 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 3 | 1 | edgiedgb 29025 | . 2 ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 dom cdm 5614 Fun wfun 6471 ‘cfv 6477 iEdgciedg 28968 Edgcedg 29018 UHGraphcuhgr 29027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-edg 29019 df-uhgr 29029 |
| This theorem is referenced by: usgredg2vtxeuALT 29193 vtxduhgr0nedg 29464 umgr2wlk 29920 1pthon2v 30123 uhgr3cyclex 30152 isuspgrim0 47904 clnbgrgrimlem 47943 clnbgrgrim 47944 grimedg 47945 |
| Copyright terms: Public domain | W3C validator |