| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgredgiedgb | Structured version Visualization version GIF version | ||
| Description: In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) |
| Ref | Expression |
|---|---|
| uhgredgiedgb.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgredgiedgb | ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgredgiedgb.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | uhgrfun 28993 | . 2 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 3 | 1 | edgiedgb 28981 | . 2 ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 dom cdm 5638 Fun wfun 6505 ‘cfv 6511 iEdgciedg 28924 Edgcedg 28974 UHGraphcuhgr 28983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-edg 28975 df-uhgr 28985 |
| This theorem is referenced by: usgredg2vtxeuALT 29149 vtxduhgr0nedg 29420 umgr2wlk 29879 1pthon2v 30082 uhgr3cyclex 30111 isuspgrim0 47894 clnbgrgrimlem 47933 clnbgrgrim 47934 grimedg 47935 |
| Copyright terms: Public domain | W3C validator |