MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2dlem2 Structured version   Visualization version   GIF version

Theorem dprd2dlem2 20084
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d.1 (𝜑 → Rel 𝐴)
dprd2d.2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
dprd2d.3 (𝜑 → dom 𝐴𝐼)
dprd2d.4 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
dprd2d.5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
dprd2d.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dprd2dlem2 ((𝜑𝑋𝐴) → (𝑆𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝑖,𝐺,𝑗   𝑖,𝐼   𝑖,𝐾   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗   𝑖,𝑋,𝑗
Allowed substitution hints:   𝐼(𝑗)   𝐾(𝑗)

Proof of Theorem dprd2dlem2
StepHypRef Expression
1 df-ov 7451 . . 3 ((1st𝑋)𝑆(2nd𝑋)) = (𝑆‘⟨(1st𝑋), (2nd𝑋)⟩)
2 dprd2d.1 . . . . . . . 8 (𝜑 → Rel 𝐴)
3 1st2nd 8080 . . . . . . . 8 ((Rel 𝐴𝑋𝐴) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
42, 3sylan 579 . . . . . . 7 ((𝜑𝑋𝐴) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
5 simpr 484 . . . . . . 7 ((𝜑𝑋𝐴) → 𝑋𝐴)
64, 5eqeltrrd 2845 . . . . . 6 ((𝜑𝑋𝐴) → ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴)
7 df-br 5167 . . . . . 6 ((1st𝑋)𝐴(2nd𝑋) ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴)
86, 7sylibr 234 . . . . 5 ((𝜑𝑋𝐴) → (1st𝑋)𝐴(2nd𝑋))
92adantr 480 . . . . . 6 ((𝜑𝑋𝐴) → Rel 𝐴)
10 elrelimasn 6115 . . . . . 6 (Rel 𝐴 → ((2nd𝑋) ∈ (𝐴 “ {(1st𝑋)}) ↔ (1st𝑋)𝐴(2nd𝑋)))
119, 10syl 17 . . . . 5 ((𝜑𝑋𝐴) → ((2nd𝑋) ∈ (𝐴 “ {(1st𝑋)}) ↔ (1st𝑋)𝐴(2nd𝑋)))
128, 11mpbird 257 . . . 4 ((𝜑𝑋𝐴) → (2nd𝑋) ∈ (𝐴 “ {(1st𝑋)}))
13 oveq2 7456 . . . . 5 (𝑗 = (2nd𝑋) → ((1st𝑋)𝑆𝑗) = ((1st𝑋)𝑆(2nd𝑋)))
14 eqid 2740 . . . . 5 (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))
15 ovex 7481 . . . . 5 ((1st𝑋)𝑆𝑗) ∈ V
1613, 14, 15fvmpt3i 7034 . . . 4 ((2nd𝑋) ∈ (𝐴 “ {(1st𝑋)}) → ((𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))‘(2nd𝑋)) = ((1st𝑋)𝑆(2nd𝑋)))
1712, 16syl 17 . . 3 ((𝜑𝑋𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))‘(2nd𝑋)) = ((1st𝑋)𝑆(2nd𝑋)))
184fveq2d 6924 . . 3 ((𝜑𝑋𝐴) → (𝑆𝑋) = (𝑆‘⟨(1st𝑋), (2nd𝑋)⟩))
191, 17, 183eqtr4a 2806 . 2 ((𝜑𝑋𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))‘(2nd𝑋)) = (𝑆𝑋))
20 sneq 4658 . . . . . . 7 (𝑖 = (1st𝑋) → {𝑖} = {(1st𝑋)})
2120imaeq2d 6089 . . . . . 6 (𝑖 = (1st𝑋) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st𝑋)}))
22 oveq1 7455 . . . . . 6 (𝑖 = (1st𝑋) → (𝑖𝑆𝑗) = ((1st𝑋)𝑆𝑗))
2321, 22mpteq12dv 5257 . . . . 5 (𝑖 = (1st𝑋) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗)))
2423breq2d 5178 . . . 4 (𝑖 = (1st𝑋) → (𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ↔ 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))))
25 dprd2d.4 . . . . . 6 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
2625ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
2726adantr 480 . . . 4 ((𝜑𝑋𝐴) → ∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
28 dprd2d.3 . . . . . 6 (𝜑 → dom 𝐴𝐼)
2928adantr 480 . . . . 5 ((𝜑𝑋𝐴) → dom 𝐴𝐼)
30 1stdm 8081 . . . . . 6 ((Rel 𝐴𝑋𝐴) → (1st𝑋) ∈ dom 𝐴)
312, 30sylan 579 . . . . 5 ((𝜑𝑋𝐴) → (1st𝑋) ∈ dom 𝐴)
3229, 31sseldd 4009 . . . 4 ((𝜑𝑋𝐴) → (1st𝑋) ∈ 𝐼)
3324, 27, 32rspcdva 3636 . . 3 ((𝜑𝑋𝐴) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗)))
3415, 14dmmpti 6724 . . . 4 dom (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗)) = (𝐴 “ {(1st𝑋)})
3534a1i 11 . . 3 ((𝜑𝑋𝐴) → dom (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗)) = (𝐴 “ {(1st𝑋)}))
3633, 35, 12dprdub 20069 . 2 ((𝜑𝑋𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))‘(2nd𝑋)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))))
3719, 36eqsstrrd 4048 1 ((𝜑𝑋𝐴) → (𝑆𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  {csn 4648  cop 4654   class class class wbr 5166  cmpt 5249  dom cdm 5700  cima 5703  Rel wrel 5705  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  mrClscmrc 17641  SubGrpcsubg 19160   DProd cdprd 20037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-mulg 19108  df-subg 19163  df-cntz 19357  df-cmn 19824  df-dprd 20039
This theorem is referenced by:  dprd2dlem1  20085  dprd2da  20086
  Copyright terms: Public domain W3C validator