![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprd2dlem2 | Structured version Visualization version GIF version |
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dprd2d.1 | ⊢ (𝜑 → Rel 𝐴) |
dprd2d.2 | ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
dprd2d.3 | ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) |
dprd2d.4 | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) |
dprd2d.5 | ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) |
dprd2d.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
Ref | Expression |
---|---|
dprd2dlem2 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝑆‘𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7451 | . . 3 ⊢ ((1st ‘𝑋)𝑆(2nd ‘𝑋)) = (𝑆‘〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
2 | dprd2d.1 | . . . . . . . 8 ⊢ (𝜑 → Rel 𝐴) | |
3 | 1st2nd 8080 | . . . . . . . 8 ⊢ ((Rel 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
4 | 2, 3 | sylan 579 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
5 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
6 | 4, 5 | eqeltrrd 2845 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐴) |
7 | df-br 5167 | . . . . . 6 ⊢ ((1st ‘𝑋)𝐴(2nd ‘𝑋) ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐴) | |
8 | 6, 7 | sylibr 234 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (1st ‘𝑋)𝐴(2nd ‘𝑋)) |
9 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → Rel 𝐴) |
10 | elrelimasn 6115 | . . . . . 6 ⊢ (Rel 𝐴 → ((2nd ‘𝑋) ∈ (𝐴 “ {(1st ‘𝑋)}) ↔ (1st ‘𝑋)𝐴(2nd ‘𝑋))) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((2nd ‘𝑋) ∈ (𝐴 “ {(1st ‘𝑋)}) ↔ (1st ‘𝑋)𝐴(2nd ‘𝑋))) |
12 | 8, 11 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (2nd ‘𝑋) ∈ (𝐴 “ {(1st ‘𝑋)})) |
13 | oveq2 7456 | . . . . 5 ⊢ (𝑗 = (2nd ‘𝑋) → ((1st ‘𝑋)𝑆𝑗) = ((1st ‘𝑋)𝑆(2nd ‘𝑋))) | |
14 | eqid 2740 | . . . . 5 ⊢ (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)) | |
15 | ovex 7481 | . . . . 5 ⊢ ((1st ‘𝑋)𝑆𝑗) ∈ V | |
16 | 13, 14, 15 | fvmpt3i 7034 | . . . 4 ⊢ ((2nd ‘𝑋) ∈ (𝐴 “ {(1st ‘𝑋)}) → ((𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))‘(2nd ‘𝑋)) = ((1st ‘𝑋)𝑆(2nd ‘𝑋))) |
17 | 12, 16 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))‘(2nd ‘𝑋)) = ((1st ‘𝑋)𝑆(2nd ‘𝑋))) |
18 | 4 | fveq2d 6924 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝑆‘𝑋) = (𝑆‘〈(1st ‘𝑋), (2nd ‘𝑋)〉)) |
19 | 1, 17, 18 | 3eqtr4a 2806 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))‘(2nd ‘𝑋)) = (𝑆‘𝑋)) |
20 | sneq 4658 | . . . . . . 7 ⊢ (𝑖 = (1st ‘𝑋) → {𝑖} = {(1st ‘𝑋)}) | |
21 | 20 | imaeq2d 6089 | . . . . . 6 ⊢ (𝑖 = (1st ‘𝑋) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st ‘𝑋)})) |
22 | oveq1 7455 | . . . . . 6 ⊢ (𝑖 = (1st ‘𝑋) → (𝑖𝑆𝑗) = ((1st ‘𝑋)𝑆𝑗)) | |
23 | 21, 22 | mpteq12dv 5257 | . . . . 5 ⊢ (𝑖 = (1st ‘𝑋) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))) |
24 | 23 | breq2d 5178 | . . . 4 ⊢ (𝑖 = (1st ‘𝑋) → (𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ↔ 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) |
25 | dprd2d.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) | |
26 | 25 | ralrimiva 3152 | . . . . 5 ⊢ (𝜑 → ∀𝑖 ∈ 𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) |
27 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ∀𝑖 ∈ 𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) |
28 | dprd2d.3 | . . . . . 6 ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) | |
29 | 28 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → dom 𝐴 ⊆ 𝐼) |
30 | 1stdm 8081 | . . . . . 6 ⊢ ((Rel 𝐴 ∧ 𝑋 ∈ 𝐴) → (1st ‘𝑋) ∈ dom 𝐴) | |
31 | 2, 30 | sylan 579 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (1st ‘𝑋) ∈ dom 𝐴) |
32 | 29, 31 | sseldd 4009 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (1st ‘𝑋) ∈ 𝐼) |
33 | 24, 27, 32 | rspcdva 3636 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))) |
34 | 15, 14 | dmmpti 6724 | . . . 4 ⊢ dom (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)) = (𝐴 “ {(1st ‘𝑋)}) |
35 | 34 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → dom (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)) = (𝐴 “ {(1st ‘𝑋)})) |
36 | 33, 35, 12 | dprdub 20069 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))‘(2nd ‘𝑋)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) |
37 | 19, 36 | eqsstrrd 4048 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝑆‘𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 {csn 4648 〈cop 4654 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 “ cima 5703 Rel wrel 5705 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 mrClscmrc 17641 SubGrpcsubg 19160 DProd cdprd 20037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-gsum 17502 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-mulg 19108 df-subg 19163 df-cntz 19357 df-cmn 19824 df-dprd 20039 |
This theorem is referenced by: dprd2dlem1 20085 dprd2da 20086 |
Copyright terms: Public domain | W3C validator |