| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprd2dlem2 | Structured version Visualization version GIF version | ||
| Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprd2d.1 | ⊢ (𝜑 → Rel 𝐴) |
| dprd2d.2 | ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
| dprd2d.3 | ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) |
| dprd2d.4 | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) |
| dprd2d.5 | ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) |
| dprd2d.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| dprd2dlem2 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝑆‘𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7355 | . . 3 ⊢ ((1st ‘𝑋)𝑆(2nd ‘𝑋)) = (𝑆‘〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
| 2 | dprd2d.1 | . . . . . . . 8 ⊢ (𝜑 → Rel 𝐴) | |
| 3 | 1st2nd 7977 | . . . . . . . 8 ⊢ ((Rel 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
| 4 | 2, 3 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
| 5 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
| 6 | 4, 5 | eqeltrrd 2834 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐴) |
| 7 | df-br 5094 | . . . . . 6 ⊢ ((1st ‘𝑋)𝐴(2nd ‘𝑋) ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐴) | |
| 8 | 6, 7 | sylibr 234 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (1st ‘𝑋)𝐴(2nd ‘𝑋)) |
| 9 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → Rel 𝐴) |
| 10 | elrelimasn 6039 | . . . . . 6 ⊢ (Rel 𝐴 → ((2nd ‘𝑋) ∈ (𝐴 “ {(1st ‘𝑋)}) ↔ (1st ‘𝑋)𝐴(2nd ‘𝑋))) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((2nd ‘𝑋) ∈ (𝐴 “ {(1st ‘𝑋)}) ↔ (1st ‘𝑋)𝐴(2nd ‘𝑋))) |
| 12 | 8, 11 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (2nd ‘𝑋) ∈ (𝐴 “ {(1st ‘𝑋)})) |
| 13 | oveq2 7360 | . . . . 5 ⊢ (𝑗 = (2nd ‘𝑋) → ((1st ‘𝑋)𝑆𝑗) = ((1st ‘𝑋)𝑆(2nd ‘𝑋))) | |
| 14 | eqid 2733 | . . . . 5 ⊢ (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)) | |
| 15 | ovex 7385 | . . . . 5 ⊢ ((1st ‘𝑋)𝑆𝑗) ∈ V | |
| 16 | 13, 14, 15 | fvmpt3i 6940 | . . . 4 ⊢ ((2nd ‘𝑋) ∈ (𝐴 “ {(1st ‘𝑋)}) → ((𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))‘(2nd ‘𝑋)) = ((1st ‘𝑋)𝑆(2nd ‘𝑋))) |
| 17 | 12, 16 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))‘(2nd ‘𝑋)) = ((1st ‘𝑋)𝑆(2nd ‘𝑋))) |
| 18 | 4 | fveq2d 6832 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝑆‘𝑋) = (𝑆‘〈(1st ‘𝑋), (2nd ‘𝑋)〉)) |
| 19 | 1, 17, 18 | 3eqtr4a 2794 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))‘(2nd ‘𝑋)) = (𝑆‘𝑋)) |
| 20 | sneq 4585 | . . . . . . 7 ⊢ (𝑖 = (1st ‘𝑋) → {𝑖} = {(1st ‘𝑋)}) | |
| 21 | 20 | imaeq2d 6013 | . . . . . 6 ⊢ (𝑖 = (1st ‘𝑋) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st ‘𝑋)})) |
| 22 | oveq1 7359 | . . . . . 6 ⊢ (𝑖 = (1st ‘𝑋) → (𝑖𝑆𝑗) = ((1st ‘𝑋)𝑆𝑗)) | |
| 23 | 21, 22 | mpteq12dv 5180 | . . . . 5 ⊢ (𝑖 = (1st ‘𝑋) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))) |
| 24 | 23 | breq2d 5105 | . . . 4 ⊢ (𝑖 = (1st ‘𝑋) → (𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ↔ 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) |
| 25 | dprd2d.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) | |
| 26 | 25 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑖 ∈ 𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) |
| 27 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ∀𝑖 ∈ 𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) |
| 28 | dprd2d.3 | . . . . . 6 ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) | |
| 29 | 28 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → dom 𝐴 ⊆ 𝐼) |
| 30 | 1stdm 7978 | . . . . . 6 ⊢ ((Rel 𝐴 ∧ 𝑋 ∈ 𝐴) → (1st ‘𝑋) ∈ dom 𝐴) | |
| 31 | 2, 30 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (1st ‘𝑋) ∈ dom 𝐴) |
| 32 | 29, 31 | sseldd 3931 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (1st ‘𝑋) ∈ 𝐼) |
| 33 | 24, 27, 32 | rspcdva 3574 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))) |
| 34 | 15, 14 | dmmpti 6630 | . . . 4 ⊢ dom (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)) = (𝐴 “ {(1st ‘𝑋)}) |
| 35 | 34 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → dom (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)) = (𝐴 “ {(1st ‘𝑋)})) |
| 36 | 33, 35, 12 | dprdub 19941 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))‘(2nd ‘𝑋)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) |
| 37 | 19, 36 | eqsstrrd 3966 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝑆‘𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 {csn 4575 〈cop 4581 class class class wbr 5093 ↦ cmpt 5174 dom cdm 5619 “ cima 5622 Rel wrel 5624 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 mrClscmrc 17487 SubGrpcsubg 19035 DProd cdprd 19909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-0g 17347 df-gsum 17348 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-mulg 18983 df-subg 19038 df-cntz 19231 df-cmn 19696 df-dprd 19911 |
| This theorem is referenced by: dprd2dlem1 19957 dprd2da 19958 |
| Copyright terms: Public domain | W3C validator |