| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprd2dlem2 | Structured version Visualization version GIF version | ||
| Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprd2d.1 | ⊢ (𝜑 → Rel 𝐴) |
| dprd2d.2 | ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
| dprd2d.3 | ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) |
| dprd2d.4 | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) |
| dprd2d.5 | ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) |
| dprd2d.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| dprd2dlem2 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝑆‘𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7390 | . . 3 ⊢ ((1st ‘𝑋)𝑆(2nd ‘𝑋)) = (𝑆‘〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
| 2 | dprd2d.1 | . . . . . . . 8 ⊢ (𝜑 → Rel 𝐴) | |
| 3 | 1st2nd 8018 | . . . . . . . 8 ⊢ ((Rel 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
| 4 | 2, 3 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
| 5 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
| 6 | 4, 5 | eqeltrrd 2829 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐴) |
| 7 | df-br 5108 | . . . . . 6 ⊢ ((1st ‘𝑋)𝐴(2nd ‘𝑋) ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐴) | |
| 8 | 6, 7 | sylibr 234 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (1st ‘𝑋)𝐴(2nd ‘𝑋)) |
| 9 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → Rel 𝐴) |
| 10 | elrelimasn 6057 | . . . . . 6 ⊢ (Rel 𝐴 → ((2nd ‘𝑋) ∈ (𝐴 “ {(1st ‘𝑋)}) ↔ (1st ‘𝑋)𝐴(2nd ‘𝑋))) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((2nd ‘𝑋) ∈ (𝐴 “ {(1st ‘𝑋)}) ↔ (1st ‘𝑋)𝐴(2nd ‘𝑋))) |
| 12 | 8, 11 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (2nd ‘𝑋) ∈ (𝐴 “ {(1st ‘𝑋)})) |
| 13 | oveq2 7395 | . . . . 5 ⊢ (𝑗 = (2nd ‘𝑋) → ((1st ‘𝑋)𝑆𝑗) = ((1st ‘𝑋)𝑆(2nd ‘𝑋))) | |
| 14 | eqid 2729 | . . . . 5 ⊢ (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)) | |
| 15 | ovex 7420 | . . . . 5 ⊢ ((1st ‘𝑋)𝑆𝑗) ∈ V | |
| 16 | 13, 14, 15 | fvmpt3i 6973 | . . . 4 ⊢ ((2nd ‘𝑋) ∈ (𝐴 “ {(1st ‘𝑋)}) → ((𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))‘(2nd ‘𝑋)) = ((1st ‘𝑋)𝑆(2nd ‘𝑋))) |
| 17 | 12, 16 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))‘(2nd ‘𝑋)) = ((1st ‘𝑋)𝑆(2nd ‘𝑋))) |
| 18 | 4 | fveq2d 6862 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝑆‘𝑋) = (𝑆‘〈(1st ‘𝑋), (2nd ‘𝑋)〉)) |
| 19 | 1, 17, 18 | 3eqtr4a 2790 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))‘(2nd ‘𝑋)) = (𝑆‘𝑋)) |
| 20 | sneq 4599 | . . . . . . 7 ⊢ (𝑖 = (1st ‘𝑋) → {𝑖} = {(1st ‘𝑋)}) | |
| 21 | 20 | imaeq2d 6031 | . . . . . 6 ⊢ (𝑖 = (1st ‘𝑋) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st ‘𝑋)})) |
| 22 | oveq1 7394 | . . . . . 6 ⊢ (𝑖 = (1st ‘𝑋) → (𝑖𝑆𝑗) = ((1st ‘𝑋)𝑆𝑗)) | |
| 23 | 21, 22 | mpteq12dv 5194 | . . . . 5 ⊢ (𝑖 = (1st ‘𝑋) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))) |
| 24 | 23 | breq2d 5119 | . . . 4 ⊢ (𝑖 = (1st ‘𝑋) → (𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ↔ 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) |
| 25 | dprd2d.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) | |
| 26 | 25 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑖 ∈ 𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) |
| 27 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ∀𝑖 ∈ 𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) |
| 28 | dprd2d.3 | . . . . . 6 ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) | |
| 29 | 28 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → dom 𝐴 ⊆ 𝐼) |
| 30 | 1stdm 8019 | . . . . . 6 ⊢ ((Rel 𝐴 ∧ 𝑋 ∈ 𝐴) → (1st ‘𝑋) ∈ dom 𝐴) | |
| 31 | 2, 30 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (1st ‘𝑋) ∈ dom 𝐴) |
| 32 | 29, 31 | sseldd 3947 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (1st ‘𝑋) ∈ 𝐼) |
| 33 | 24, 27, 32 | rspcdva 3589 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))) |
| 34 | 15, 14 | dmmpti 6662 | . . . 4 ⊢ dom (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)) = (𝐴 “ {(1st ‘𝑋)}) |
| 35 | 34 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → dom (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)) = (𝐴 “ {(1st ‘𝑋)})) |
| 36 | 33, 35, 12 | dprdub 19957 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗))‘(2nd ‘𝑋)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) |
| 37 | 19, 36 | eqsstrrd 3982 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝑆‘𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 {csn 4589 〈cop 4595 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 “ cima 5641 Rel wrel 5643 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 mrClscmrc 17544 SubGrpcsubg 19052 DProd cdprd 19925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-gsum 17405 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-mulg 19000 df-subg 19055 df-cntz 19249 df-cmn 19712 df-dprd 19927 |
| This theorem is referenced by: dprd2dlem1 19973 dprd2da 19974 |
| Copyright terms: Public domain | W3C validator |