MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2dlem2 Structured version   Visualization version   GIF version

Theorem dprd2dlem2 19558
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d.1 (𝜑 → Rel 𝐴)
dprd2d.2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
dprd2d.3 (𝜑 → dom 𝐴𝐼)
dprd2d.4 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
dprd2d.5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
dprd2d.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dprd2dlem2 ((𝜑𝑋𝐴) → (𝑆𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝑖,𝐺,𝑗   𝑖,𝐼   𝑖,𝐾   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗   𝑖,𝑋,𝑗
Allowed substitution hints:   𝐼(𝑗)   𝐾(𝑗)

Proof of Theorem dprd2dlem2
StepHypRef Expression
1 df-ov 7258 . . 3 ((1st𝑋)𝑆(2nd𝑋)) = (𝑆‘⟨(1st𝑋), (2nd𝑋)⟩)
2 dprd2d.1 . . . . . . . 8 (𝜑 → Rel 𝐴)
3 1st2nd 7853 . . . . . . . 8 ((Rel 𝐴𝑋𝐴) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
42, 3sylan 579 . . . . . . 7 ((𝜑𝑋𝐴) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
5 simpr 484 . . . . . . 7 ((𝜑𝑋𝐴) → 𝑋𝐴)
64, 5eqeltrrd 2840 . . . . . 6 ((𝜑𝑋𝐴) → ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴)
7 df-br 5071 . . . . . 6 ((1st𝑋)𝐴(2nd𝑋) ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴)
86, 7sylibr 233 . . . . 5 ((𝜑𝑋𝐴) → (1st𝑋)𝐴(2nd𝑋))
92adantr 480 . . . . . 6 ((𝜑𝑋𝐴) → Rel 𝐴)
10 elrelimasn 5982 . . . . . 6 (Rel 𝐴 → ((2nd𝑋) ∈ (𝐴 “ {(1st𝑋)}) ↔ (1st𝑋)𝐴(2nd𝑋)))
119, 10syl 17 . . . . 5 ((𝜑𝑋𝐴) → ((2nd𝑋) ∈ (𝐴 “ {(1st𝑋)}) ↔ (1st𝑋)𝐴(2nd𝑋)))
128, 11mpbird 256 . . . 4 ((𝜑𝑋𝐴) → (2nd𝑋) ∈ (𝐴 “ {(1st𝑋)}))
13 oveq2 7263 . . . . 5 (𝑗 = (2nd𝑋) → ((1st𝑋)𝑆𝑗) = ((1st𝑋)𝑆(2nd𝑋)))
14 eqid 2738 . . . . 5 (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))
15 ovex 7288 . . . . 5 ((1st𝑋)𝑆𝑗) ∈ V
1613, 14, 15fvmpt3i 6862 . . . 4 ((2nd𝑋) ∈ (𝐴 “ {(1st𝑋)}) → ((𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))‘(2nd𝑋)) = ((1st𝑋)𝑆(2nd𝑋)))
1712, 16syl 17 . . 3 ((𝜑𝑋𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))‘(2nd𝑋)) = ((1st𝑋)𝑆(2nd𝑋)))
184fveq2d 6760 . . 3 ((𝜑𝑋𝐴) → (𝑆𝑋) = (𝑆‘⟨(1st𝑋), (2nd𝑋)⟩))
191, 17, 183eqtr4a 2805 . 2 ((𝜑𝑋𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))‘(2nd𝑋)) = (𝑆𝑋))
20 sneq 4568 . . . . . . 7 (𝑖 = (1st𝑋) → {𝑖} = {(1st𝑋)})
2120imaeq2d 5958 . . . . . 6 (𝑖 = (1st𝑋) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st𝑋)}))
22 oveq1 7262 . . . . . 6 (𝑖 = (1st𝑋) → (𝑖𝑆𝑗) = ((1st𝑋)𝑆𝑗))
2321, 22mpteq12dv 5161 . . . . 5 (𝑖 = (1st𝑋) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗)))
2423breq2d 5082 . . . 4 (𝑖 = (1st𝑋) → (𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ↔ 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))))
25 dprd2d.4 . . . . . 6 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
2625ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
2726adantr 480 . . . 4 ((𝜑𝑋𝐴) → ∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
28 dprd2d.3 . . . . . 6 (𝜑 → dom 𝐴𝐼)
2928adantr 480 . . . . 5 ((𝜑𝑋𝐴) → dom 𝐴𝐼)
30 1stdm 7854 . . . . . 6 ((Rel 𝐴𝑋𝐴) → (1st𝑋) ∈ dom 𝐴)
312, 30sylan 579 . . . . 5 ((𝜑𝑋𝐴) → (1st𝑋) ∈ dom 𝐴)
3229, 31sseldd 3918 . . . 4 ((𝜑𝑋𝐴) → (1st𝑋) ∈ 𝐼)
3324, 27, 32rspcdva 3554 . . 3 ((𝜑𝑋𝐴) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗)))
3415, 14dmmpti 6561 . . . 4 dom (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗)) = (𝐴 “ {(1st𝑋)})
3534a1i 11 . . 3 ((𝜑𝑋𝐴) → dom (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗)) = (𝐴 “ {(1st𝑋)}))
3633, 35, 12dprdub 19543 . 2 ((𝜑𝑋𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))‘(2nd𝑋)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))))
3719, 36eqsstrrd 3956 1 ((𝜑𝑋𝐴) → (𝑆𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153  dom cdm 5580  cima 5583  Rel wrel 5585  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  mrClscmrc 17209  SubGrpcsubg 18664   DProd cdprd 19511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-mulg 18616  df-subg 18667  df-cntz 18838  df-cmn 19303  df-dprd 19513
This theorem is referenced by:  dprd2dlem1  19559  dprd2da  19560
  Copyright terms: Public domain W3C validator