| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sdomg | Structured version Visualization version GIF version | ||
| Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006.) Avoid ax-pow 5307, ax-un 7675. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| 0sdomg | ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0domg 9028 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) | |
| 2 | brsdom 8907 | . . . 4 ⊢ (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴)) | |
| 3 | 2 | baib 535 | . . 3 ⊢ (∅ ≼ 𝐴 → (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴)) |
| 5 | en0r 8952 | . . 3 ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) | |
| 6 | 5 | necon3bbii 2972 | . 2 ⊢ (¬ ∅ ≈ 𝐴 ↔ 𝐴 ≠ ∅) |
| 7 | 4, 6 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 ≠ wne 2925 ∅c0 4286 class class class wbr 5095 ≈ cen 8876 ≼ cdom 8877 ≺ csdm 8878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-en 8880 df-dom 8881 df-sdom 8882 |
| This theorem is referenced by: 0sdom 9032 fodomr 9052 pwdom 9053 0sdom1dom 9145 1sdom2dom 9153 infn0ALT 9210 fodomfir 9237 fodomfib 9238 fodomfibOLD 9240 domwdom 9485 iunfictbso 10027 djulepw 10106 fin45 10305 fodomb 10439 brdom3 10441 gchxpidm 10582 inar1 10688 csdfil 23797 ovoliunnul 25424 carsgclctunlem3 34287 domalom 37377 ovoliunnfl 37641 voliunnfl 37643 volsupnfl 37644 sdomne0 43386 sdomne0d 43387 ensucne0OLD 43503 nnfoctb 45026 caragenunicl 46506 |
| Copyright terms: Public domain | W3C validator |