MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sdomg Structured version   Visualization version   GIF version

Theorem 0sdomg 9070
Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006.) Avoid ax-pow 5320, ax-un 7711. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
0sdomg (𝐴𝑉 → (∅ ≺ 𝐴𝐴 ≠ ∅))

Proof of Theorem 0sdomg
StepHypRef Expression
1 0domg 9068 . . 3 (𝐴𝑉 → ∅ ≼ 𝐴)
2 brsdom 8946 . . . 4 (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴))
32baib 535 . . 3 (∅ ≼ 𝐴 → (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴))
41, 3syl 17 . 2 (𝐴𝑉 → (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴))
5 en0r 8991 . . 3 (∅ ≈ 𝐴𝐴 = ∅)
65necon3bbii 2972 . 2 (¬ ∅ ≈ 𝐴𝐴 ≠ ∅)
74, 6bitrdi 287 1 (𝐴𝑉 → (∅ ≺ 𝐴𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2109  wne 2925  c0 4296   class class class wbr 5107  cen 8915  cdom 8916  csdm 8917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-en 8919  df-dom 8920  df-sdom 8921
This theorem is referenced by:  0sdom  9072  fodomr  9092  pwdom  9093  0sdom1dom  9185  sdom1OLD  9190  1sdom2dom  9194  infn0ALT  9252  fodomfir  9279  fodomfib  9280  fodomfibOLD  9282  domwdom  9527  iunfictbso  10067  djulepw  10146  fin45  10345  fodomb  10479  brdom3  10481  gchxpidm  10622  inar1  10728  csdfil  23781  ovoliunnul  25408  carsgclctunlem3  34311  domalom  37392  ovoliunnfl  37656  voliunnfl  37658  volsupnfl  37659  sdomne0  43402  sdomne0d  43403  ensucne0OLD  43519  nnfoctb  45042  caragenunicl  46522
  Copyright terms: Public domain W3C validator