| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sdomg | Structured version Visualization version GIF version | ||
| Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006.) Avoid ax-pow 5335, ax-un 7729. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| 0sdomg | ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0domg 9114 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) | |
| 2 | brsdom 8989 | . . . 4 ⊢ (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴)) | |
| 3 | 2 | baib 535 | . . 3 ⊢ (∅ ≼ 𝐴 → (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴)) |
| 5 | en0r 9034 | . . 3 ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) | |
| 6 | 5 | necon3bbii 2979 | . 2 ⊢ (¬ ∅ ≈ 𝐴 ↔ 𝐴 ≠ ∅) |
| 7 | 4, 6 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 class class class wbr 5119 ≈ cen 8956 ≼ cdom 8957 ≺ csdm 8958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-en 8960 df-dom 8961 df-sdom 8962 |
| This theorem is referenced by: 0sdom 9121 fodomr 9142 pwdom 9143 0sdom1dom 9246 sdom1OLD 9251 1sdom2dom 9255 infn0ALT 9313 fodomfir 9340 fodomfib 9341 fodomfibOLD 9343 domwdom 9588 iunfictbso 10128 djulepw 10207 fin45 10406 fodomb 10540 brdom3 10542 gchxpidm 10683 inar1 10789 csdfil 23832 ovoliunnul 25460 carsgclctunlem3 34352 domalom 37422 ovoliunnfl 37686 voliunnfl 37688 volsupnfl 37689 sdomne0 43437 sdomne0d 43438 ensucne0OLD 43554 nnfoctb 45072 caragenunicl 46553 |
| Copyright terms: Public domain | W3C validator |