Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0sdomg | Structured version Visualization version GIF version |
Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006.) Avoid ax-pow 5289, ax-un 7597. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
0sdomg | ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0domg 8896 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) | |
2 | brsdom 8772 | . . . 4 ⊢ (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴)) | |
3 | 2 | baib 536 | . . 3 ⊢ (∅ ≼ 𝐴 → (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴)) |
5 | en0r 8815 | . . 3 ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) | |
6 | 5 | necon3bbii 2992 | . 2 ⊢ (¬ ∅ ≈ 𝐴 ↔ 𝐴 ≠ ∅) |
7 | 4, 6 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2107 ≠ wne 2944 ∅c0 4257 class class class wbr 5075 ≈ cen 8739 ≼ cdom 8740 ≺ csdm 8741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-en 8743 df-dom 8744 df-sdom 8745 |
This theorem is referenced by: 0sdom 8903 fodomr 8924 pwdom 8925 sdom1 9031 infn0 9085 fodomfib 9102 domwdom 9342 iunfictbso 9879 djulepw 9957 fin45 10157 fodomb 10291 brdom3 10293 gchxpidm 10434 inar1 10540 csdfil 23054 ovoliunnul 24680 carsgclctunlem3 32296 domalom 35584 ovoliunnfl 35828 voliunnfl 35830 volsupnfl 35831 ensucne0OLD 41144 nnfoctb 42602 caragenunicl 44069 |
Copyright terms: Public domain | W3C validator |