MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sdomg Structured version   Visualization version   GIF version

Theorem 0sdomg 9170
Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006.) Avoid ax-pow 5383, ax-un 7770. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
0sdomg (𝐴𝑉 → (∅ ≺ 𝐴𝐴 ≠ ∅))

Proof of Theorem 0sdomg
StepHypRef Expression
1 0domg 9166 . . 3 (𝐴𝑉 → ∅ ≼ 𝐴)
2 brsdom 9035 . . . 4 (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴))
32baib 535 . . 3 (∅ ≼ 𝐴 → (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴))
41, 3syl 17 . 2 (𝐴𝑉 → (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴))
5 en0r 9081 . . 3 (∅ ≈ 𝐴𝐴 = ∅)
65necon3bbii 2994 . 2 (¬ ∅ ≈ 𝐴𝐴 ≠ ∅)
74, 6bitrdi 287 1 (𝐴𝑉 → (∅ ≺ 𝐴𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2108  wne 2946  c0 4352   class class class wbr 5166  cen 9000  cdom 9001  csdm 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-en 9004  df-dom 9005  df-sdom 9006
This theorem is referenced by:  0sdom  9173  fodomr  9194  pwdom  9195  0sdom1dom  9301  sdom1OLD  9306  1sdom2dom  9310  infn0ALT  9369  fodomfir  9396  fodomfib  9397  fodomfibOLD  9399  domwdom  9643  iunfictbso  10183  djulepw  10262  fin45  10461  fodomb  10595  brdom3  10597  gchxpidm  10738  inar1  10844  csdfil  23923  ovoliunnul  25561  carsgclctunlem3  34285  domalom  37370  ovoliunnfl  37622  voliunnfl  37624  volsupnfl  37625  sdomne0  43375  sdomne0d  43376  ensucne0OLD  43492  nnfoctb  44949  caragenunicl  46445
  Copyright terms: Public domain W3C validator