![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0sdomg | Structured version Visualization version GIF version |
Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006.) Avoid ax-pow 5362, ax-un 7721. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
0sdomg | ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0domg 9096 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) | |
2 | brsdom 8967 | . . . 4 ⊢ (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴)) | |
3 | 2 | baib 536 | . . 3 ⊢ (∅ ≼ 𝐴 → (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴)) |
5 | en0r 9012 | . . 3 ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) | |
6 | 5 | necon3bbii 2988 | . 2 ⊢ (¬ ∅ ≈ 𝐴 ↔ 𝐴 ≠ ∅) |
7 | 4, 6 | bitrdi 286 | 1 ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2106 ≠ wne 2940 ∅c0 4321 class class class wbr 5147 ≈ cen 8932 ≼ cdom 8933 ≺ csdm 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-en 8936 df-dom 8937 df-sdom 8938 |
This theorem is referenced by: 0sdom 9103 fodomr 9124 pwdom 9125 0sdom1dom 9234 sdom1OLD 9239 1sdom2dom 9243 infn0ALT 9304 fodomfib 9322 domwdom 9565 iunfictbso 10105 djulepw 10183 fin45 10383 fodomb 10517 brdom3 10519 gchxpidm 10660 inar1 10766 csdfil 23389 ovoliunnul 25015 carsgclctunlem3 33307 domalom 36273 ovoliunnfl 36518 voliunnfl 36520 volsupnfl 36521 sdomne0 42149 sdomne0d 42150 ensucne0OLD 42266 nnfoctb 43719 caragenunicl 45226 |
Copyright terms: Public domain | W3C validator |