| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enqer | Structured version Visualization version GIF version | ||
| Description: The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enqer | ⊢ ~Q Er (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-enq 10799 | . 2 ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | |
| 2 | mulcompi 10784 | . 2 ⊢ (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥) | |
| 3 | mulclpi 10781 | . 2 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (𝑥 ·N 𝑦) ∈ N) | |
| 4 | mulasspi 10785 | . 2 ⊢ ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)) | |
| 5 | mulcanpi 10788 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ((𝑥 ·N 𝑦) = (𝑥 ·N 𝑧) ↔ 𝑦 = 𝑧)) | |
| 6 | 5 | biimpd 229 | . 2 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ((𝑥 ·N 𝑦) = (𝑥 ·N 𝑧) → 𝑦 = 𝑧)) |
| 7 | 1, 2, 3, 4, 6 | ecopover 8745 | 1 ⊢ ~Q Er (N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 × cxp 5614 (class class class)co 7346 Er wer 8619 Ncnpi 10732 ·N cmi 10734 ~Q ceq 10739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-oadd 8389 df-omul 8390 df-er 8622 df-ni 10760 df-mi 10762 df-enq 10799 |
| This theorem is referenced by: nqereu 10817 nqerf 10818 nqerid 10821 enqeq 10822 nqereq 10823 adderpq 10844 mulerpq 10845 1nqenq 10850 |
| Copyright terms: Public domain | W3C validator |