| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enqer | Structured version Visualization version GIF version | ||
| Description: The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enqer | ⊢ ~Q Er (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-enq 10864 | . 2 ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | |
| 2 | mulcompi 10849 | . 2 ⊢ (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥) | |
| 3 | mulclpi 10846 | . 2 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (𝑥 ·N 𝑦) ∈ N) | |
| 4 | mulasspi 10850 | . 2 ⊢ ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)) | |
| 5 | mulcanpi 10853 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ((𝑥 ·N 𝑦) = (𝑥 ·N 𝑧) ↔ 𝑦 = 𝑧)) | |
| 6 | 5 | biimpd 229 | . 2 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ((𝑥 ·N 𝑦) = (𝑥 ·N 𝑧) → 𝑦 = 𝑧)) |
| 7 | 1, 2, 3, 4, 6 | ecopover 8794 | 1 ⊢ ~Q Er (N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5636 (class class class)co 7387 Er wer 8668 Ncnpi 10797 ·N cmi 10799 ~Q ceq 10804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-oadd 8438 df-omul 8439 df-er 8671 df-ni 10825 df-mi 10827 df-enq 10864 |
| This theorem is referenced by: nqereu 10882 nqerf 10883 nqerid 10886 enqeq 10887 nqereq 10888 adderpq 10909 mulerpq 10910 1nqenq 10915 |
| Copyright terms: Public domain | W3C validator |