![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enqer | Structured version Visualization version GIF version |
Description: The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enqer | โข ~Q Er (N ร N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-enq 10905 | . 2 โข ~Q = {โจ๐ฅ, ๐ฆโฉ โฃ ((๐ฅ โ (N ร N) โง ๐ฆ โ (N ร N)) โง โ๐งโ๐คโ๐ฃโ๐ข((๐ฅ = โจ๐ง, ๐คโฉ โง ๐ฆ = โจ๐ฃ, ๐ขโฉ) โง (๐ง ยทN ๐ข) = (๐ค ยทN ๐ฃ)))} | |
2 | mulcompi 10890 | . 2 โข (๐ฅ ยทN ๐ฆ) = (๐ฆ ยทN ๐ฅ) | |
3 | mulclpi 10887 | . 2 โข ((๐ฅ โ N โง ๐ฆ โ N) โ (๐ฅ ยทN ๐ฆ) โ N) | |
4 | mulasspi 10891 | . 2 โข ((๐ฅ ยทN ๐ฆ) ยทN ๐ง) = (๐ฅ ยทN (๐ฆ ยทN ๐ง)) | |
5 | mulcanpi 10894 | . . 3 โข ((๐ฅ โ N โง ๐ฆ โ N) โ ((๐ฅ ยทN ๐ฆ) = (๐ฅ ยทN ๐ง) โ ๐ฆ = ๐ง)) | |
6 | 5 | biimpd 228 | . 2 โข ((๐ฅ โ N โง ๐ฆ โ N) โ ((๐ฅ ยทN ๐ฆ) = (๐ฅ ยทN ๐ง) โ ๐ฆ = ๐ง)) |
7 | 1, 2, 3, 4, 6 | ecopover 8814 | 1 โข ~Q Er (N ร N) |
Colors of variables: wff setvar class |
Syntax hints: โง wa 396 = wceq 1541 โ wcel 2106 ร cxp 5674 (class class class)co 7408 Er wer 8699 Ncnpi 10838 ยทN cmi 10840 ~Q ceq 10845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-oadd 8469 df-omul 8470 df-er 8702 df-ni 10866 df-mi 10868 df-enq 10905 |
This theorem is referenced by: nqereu 10923 nqerf 10924 nqerid 10927 enqeq 10928 nqereq 10929 adderpq 10950 mulerpq 10951 1nqenq 10956 |
Copyright terms: Public domain | W3C validator |