| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enqer | Structured version Visualization version GIF version | ||
| Description: The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enqer | ⊢ ~Q Er (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-enq 10809 | . 2 ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | |
| 2 | mulcompi 10794 | . 2 ⊢ (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥) | |
| 3 | mulclpi 10791 | . 2 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (𝑥 ·N 𝑦) ∈ N) | |
| 4 | mulasspi 10795 | . 2 ⊢ ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)) | |
| 5 | mulcanpi 10798 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ((𝑥 ·N 𝑦) = (𝑥 ·N 𝑧) ↔ 𝑦 = 𝑧)) | |
| 6 | 5 | biimpd 229 | . 2 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ((𝑥 ·N 𝑦) = (𝑥 ·N 𝑧) → 𝑦 = 𝑧)) |
| 7 | 1, 2, 3, 4, 6 | ecopover 8751 | 1 ⊢ ~Q Er (N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 × cxp 5617 (class class class)co 7352 Er wer 8625 Ncnpi 10742 ·N cmi 10744 ~Q ceq 10749 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-oadd 8395 df-omul 8396 df-er 8628 df-ni 10770 df-mi 10772 df-enq 10809 |
| This theorem is referenced by: nqereu 10827 nqerf 10828 nqerid 10831 enqeq 10832 nqereq 10833 adderpq 10854 mulerpq 10855 1nqenq 10860 |
| Copyright terms: Public domain | W3C validator |