MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enqer Structured version   Visualization version   GIF version

Theorem enqer 10770
Description: The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.)
Assertion
Ref Expression
enqer ~Q Er (N × N)

Proof of Theorem enqer
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq 10760 . 2 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
2 mulcompi 10745 . 2 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
3 mulclpi 10742 . 2 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
4 mulasspi 10746 . 2 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
5 mulcanpi 10749 . . 3 ((𝑥N𝑦N) → ((𝑥 ·N 𝑦) = (𝑥 ·N 𝑧) ↔ 𝑦 = 𝑧))
65biimpd 228 . 2 ((𝑥N𝑦N) → ((𝑥 ·N 𝑦) = (𝑥 ·N 𝑧) → 𝑦 = 𝑧))
71, 2, 3, 4, 6ecopover 8673 1 ~Q Er (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1540  wcel 2105   × cxp 5612  (class class class)co 7329   Er wer 8558  Ncnpi 10693   ·N cmi 10695   ~Q ceq 10700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-oadd 8363  df-omul 8364  df-er 8561  df-ni 10721  df-mi 10723  df-enq 10760
This theorem is referenced by:  nqereu  10778  nqerf  10779  nqerid  10782  enqeq  10783  nqereq  10784  adderpq  10805  mulerpq  10806  1nqenq  10811
  Copyright terms: Public domain W3C validator