Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreldisj4 Structured version   Visualization version   GIF version

Theorem eqvreldisj4 38776
Description: Intersection with the converse epsilon relation restricted to the quotient set of an equivalence relation is disjoint. (Contributed by Peter Mazsa, 30-May-2020.) (Revised by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
eqvreldisj4 ( EqvRel 𝑅 → Disj (𝑆 ∩ ( E ↾ (𝐵 / 𝑅))))

Proof of Theorem eqvreldisj4
StepHypRef Expression
1 eqvreldisj3 38775 . 2 ( EqvRel 𝑅 → Disj ( E ↾ (𝐵 / 𝑅)))
2 disjimin 38700 . 2 ( Disj ( E ↾ (𝐵 / 𝑅)) → Disj (𝑆 ∩ ( E ↾ (𝐵 / 𝑅))))
31, 2syl 17 1 ( EqvRel 𝑅 → Disj (𝑆 ∩ ( E ↾ (𝐵 / 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3975   E cep 5598  ccnv 5694  cres 5697   / cqs 8756   EqvRel weqvrel 38145   Disj wdisjALTV 38162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-eprel 5599  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-ec 8759  df-qs 8763  df-coss 38360  df-refrel 38461  df-cnvrefrel 38476  df-symrel 38493  df-trrel 38523  df-eqvrel 38534  df-funALTV 38631  df-disjALTV 38654  df-eldisj 38656
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator