Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreldisj5 Structured version   Visualization version   GIF version

Theorem eqvreldisj5 37048
Description: Tail Cartesian product with converse epsilon relation restricted to the quotient set of an equivalence relation is disjoint. (Contributed by Peter Mazsa, 30-May-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
Assertion
Ref Expression
eqvreldisj5 ( EqvRel 𝑅 → Disj (𝑆 ⋉ ( E ↾ (𝐵 / 𝑅))))

Proof of Theorem eqvreldisj5
StepHypRef Expression
1 eqvreldisj3 37046 . 2 ( EqvRel 𝑅 → Disj ( E ↾ (𝐵 / 𝑅)))
2 disjimxrn 36969 . 2 ( Disj ( E ↾ (𝐵 / 𝑅)) → Disj (𝑆 ⋉ ( E ↾ (𝐵 / 𝑅))))
31, 2syl 17 1 ( EqvRel 𝑅 → Disj (𝑆 ⋉ ( E ↾ (𝐵 / 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   E cep 5505  ccnv 5599  cres 5602   / cqs 8528  cxrn 36386   EqvRel weqvrel 36404   Disj wdisjALTV 36421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3339  df-rab 3341  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-eprel 5506  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fo 6464  df-fv 6466  df-1st 7863  df-2nd 7864  df-ec 8531  df-qs 8535  df-xrn 36591  df-coss 36631  df-refrel 36732  df-cnvrefrel 36747  df-symrel 36764  df-trrel 36794  df-eqvrel 36805  df-disjALTV 36925  df-eldisj 36927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator