Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreldisj5 Structured version   Visualization version   GIF version

Theorem eqvreldisj5 38805
Description: Range Cartesian product with converse epsilon relation restricted to the quotient set of an equivalence relation is disjoint. (Contributed by Peter Mazsa, 30-May-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
Assertion
Ref Expression
eqvreldisj5 ( EqvRel 𝑅 → Disj (𝑆 ⋉ ( E ↾ (𝐵 / 𝑅))))

Proof of Theorem eqvreldisj5
StepHypRef Expression
1 eqvreldisj3 38803 . 2 ( EqvRel 𝑅 → Disj ( E ↾ (𝐵 / 𝑅)))
2 disjimxrn 38726 . 2 ( Disj ( E ↾ (𝐵 / 𝑅)) → Disj (𝑆 ⋉ ( E ↾ (𝐵 / 𝑅))))
31, 2syl 17 1 ( EqvRel 𝑅 → Disj (𝑆 ⋉ ( E ↾ (𝐵 / 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   E cep 5522  ccnv 5622  cres 5625   / cqs 8631  cxrn 38153   EqvRel weqvrel 38171   Disj wdisjALTV 38188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-eprel 5523  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-1st 7931  df-2nd 7932  df-ec 8634  df-qs 8638  df-xrn 38338  df-coss 38387  df-refrel 38488  df-cnvrefrel 38503  df-symrel 38520  df-trrel 38550  df-eqvrel 38561  df-disjALTV 38682  df-eldisj 38684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator