Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erimeq Structured version   Visualization version   GIF version

Theorem erimeq 38151
Description: Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is the most convenient form of prter3 38354 and erimeq2 38150). (Contributed by Peter Mazsa, 7-Oct-2021.) (Revised by Peter Mazsa, 29-Dec-2021.)
Assertion
Ref Expression
erimeq (𝑅𝑉 → (𝑅 ErALTV 𝐴 → ∼ 𝐴 = 𝑅))

Proof of Theorem erimeq
StepHypRef Expression
1 dferALTV2 38140 . 2 (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
2 erimeq2 38150 . 2 (𝑅𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅))
31, 2biimtrid 241 1 (𝑅𝑉 → (𝑅 ErALTV 𝐴 → ∼ 𝐴 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  dom cdm 5678   / cqs 8724  ccoels 37649   EqvRel weqvrel 37665   ErALTV werALTV 37674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-id 5576  df-eprel 5582  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ec 8727  df-qs 8731  df-coss 37883  df-coels 37884  df-refrel 37984  df-symrel 38016  df-trrel 38046  df-eqvrel 38057  df-dmqs 38111  df-erALTV 38136
This theorem is referenced by:  partimeq  38281
  Copyright terms: Public domain W3C validator