| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erimeq | Structured version Visualization version GIF version | ||
| Description: Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is the most convenient form of prter3 38871 and erimeq2 38666). (Contributed by Peter Mazsa, 7-Oct-2021.) (Revised by Peter Mazsa, 29-Dec-2021.) |
| Ref | Expression |
|---|---|
| erimeq | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ErALTV 𝐴 → ∼ 𝐴 = 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dferALTV2 38656 | . 2 ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
| 2 | erimeq2 38666 | . 2 ⊢ (𝑅 ∈ 𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅)) | |
| 3 | 1, 2 | biimtrid 242 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ErALTV 𝐴 → ∼ 𝐴 = 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 dom cdm 5619 / cqs 8624 ∼ ccoels 38166 EqvRel weqvrel 38182 ErALTV werALTV 38191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8627 df-qs 8631 df-coss 38398 df-coels 38399 df-refrel 38499 df-symrel 38531 df-trrel 38561 df-eqvrel 38572 df-dmqs 38626 df-erALTV 38652 |
| This theorem is referenced by: partimeq 38797 |
| Copyright terms: Public domain | W3C validator |