Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erimeq Structured version   Visualization version   GIF version

Theorem erimeq 38060
Description: Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is the most convenient form of prter3 38263 and erimeq2 38059). (Contributed by Peter Mazsa, 7-Oct-2021.) (Revised by Peter Mazsa, 29-Dec-2021.)
Assertion
Ref Expression
erimeq (𝑅𝑉 → (𝑅 ErALTV 𝐴 → ∼ 𝐴 = 𝑅))

Proof of Theorem erimeq
StepHypRef Expression
1 dferALTV2 38049 . 2 (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
2 erimeq2 38059 . 2 (𝑅𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅))
31, 2biimtrid 241 1 (𝑅𝑉 → (𝑅 ErALTV 𝐴 → ∼ 𝐴 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  dom cdm 5669   / cqs 8701  ccoels 37555   EqvRel weqvrel 37571   ErALTV werALTV 37580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-id 5567  df-eprel 5573  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ec 8704  df-qs 8708  df-coss 37792  df-coels 37793  df-refrel 37893  df-symrel 37925  df-trrel 37955  df-eqvrel 37966  df-dmqs 38020  df-erALTV 38045
This theorem is referenced by:  partimeq  38190
  Copyright terms: Public domain W3C validator