![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pi1addf | Structured version Visualization version GIF version |
Description: The group operation of π1 is a binary operation. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
elpi1.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
elpi1.b | ⊢ 𝐵 = (Base‘𝐺) |
elpi1.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
elpi1.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
pi1addf.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
pi1addf | ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2794 | . . . . . 6 ⊢ (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽)) = ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽))) | |
2 | eqidd 2794 | . . . . . 6 ⊢ (𝜑 → (Base‘(𝐽 Ω1 𝑌)) = (Base‘(𝐽 Ω1 𝑌))) | |
3 | fvexd 6545 | . . . . . 6 ⊢ (𝜑 → ( ≃ph‘𝐽) ∈ V) | |
4 | ovexd 7041 | . . . . . 6 ⊢ (𝜑 → (𝐽 Ω1 𝑌) ∈ V) | |
5 | elpi1.g | . . . . . . . 8 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
6 | elpi1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
7 | elpi1.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
8 | eqid 2793 | . . . . . . . 8 ⊢ (𝐽 Ω1 𝑌) = (𝐽 Ω1 𝑌) | |
9 | elpi1.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
10 | 9 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
11 | 5, 6, 7, 8, 10, 2 | pi1blem 23314 | . . . . . . 7 ⊢ (𝜑 → ((( ≃ph‘𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌)) ∧ (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽))) |
12 | 11 | simpld 495 | . . . . . 6 ⊢ (𝜑 → (( ≃ph‘𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌))) |
13 | 1, 2, 3, 4, 12 | qusin 16634 | . . . . 5 ⊢ (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽)) = ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))))) |
14 | 5, 6, 7, 8 | pi1val 23312 | . . . . 5 ⊢ (𝜑 → 𝐺 = ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽))) |
15 | 5, 6, 7, 8, 10, 2 | pi1buni 23315 | . . . . . . . 8 ⊢ (𝜑 → ∪ 𝐵 = (Base‘(𝐽 Ω1 𝑌))) |
16 | 15 | sqxpeqd 5467 | . . . . . . 7 ⊢ (𝜑 → (∪ 𝐵 × ∪ 𝐵) = ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))) |
17 | 16 | ineq2d 4104 | . . . . . 6 ⊢ (𝜑 → (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) = (( ≃ph‘𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))) |
18 | 17 | oveq2d 7023 | . . . . 5 ⊢ (𝜑 → ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) = ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))))) |
19 | 13, 14, 18 | 3eqtr4d 2839 | . . . 4 ⊢ (𝜑 → 𝐺 = ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
20 | phtpcer 23270 | . . . . . 6 ⊢ ( ≃ph‘𝐽) Er (II Cn 𝐽) | |
21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → ( ≃ph‘𝐽) Er (II Cn 𝐽)) |
22 | 11 | simprd 496 | . . . . . 6 ⊢ (𝜑 → (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽)) |
23 | 15, 22 | eqsstrd 3921 | . . . . 5 ⊢ (𝜑 → ∪ 𝐵 ⊆ (II Cn 𝐽)) |
24 | 21, 23 | erinxp 8212 | . . . 4 ⊢ (𝜑 → (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) Er ∪ 𝐵) |
25 | eqid 2793 | . . . . 5 ⊢ (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) | |
26 | eqid 2793 | . . . . 5 ⊢ (+g‘(𝐽 Ω1 𝑌)) = (+g‘(𝐽 Ω1 𝑌)) | |
27 | 5, 6, 7, 10, 25, 8, 26 | pi1cpbl 23319 | . . . 4 ⊢ (𝜑 → ((𝑎(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑐 ∧ 𝑏(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑑) → (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑))) |
28 | 6 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝐽 ∈ (TopOn‘𝑋)) |
29 | 7 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝑌 ∈ 𝑋) |
30 | 8, 28, 29 | om1plusg 23309 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (*𝑝‘𝐽) = (+g‘(𝐽 Ω1 𝑌))) |
31 | 30 | oveqd 7024 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (𝑐(*𝑝‘𝐽)𝑑) = (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)) |
32 | 15 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → ∪ 𝐵 = (Base‘(𝐽 Ω1 𝑌))) |
33 | simprl 767 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝑐 ∈ ∪ 𝐵) | |
34 | simprr 769 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝑑 ∈ ∪ 𝐵) | |
35 | 8, 28, 29, 32, 33, 34 | om1addcl 23308 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (𝑐(*𝑝‘𝐽)𝑑) ∈ ∪ 𝐵) |
36 | 31, 35 | eqeltrrd 2882 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑) ∈ ∪ 𝐵) |
37 | pi1addf.p | . . . 4 ⊢ + = (+g‘𝐺) | |
38 | 19, 15, 24, 4, 27, 36, 26, 37 | qusaddf 16644 | . . 3 ⊢ (𝜑 → + :((∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) × (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
39 | 5, 6, 7, 10, 25 | pi1bas3 23318 | . . . . 5 ⊢ (𝜑 → 𝐵 = (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
40 | 39 | sqxpeqd 5467 | . . . 4 ⊢ (𝜑 → (𝐵 × 𝐵) = ((∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) × (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))) |
41 | 40 | feq2d 6360 | . . 3 ⊢ (𝜑 → ( + :(𝐵 × 𝐵)⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) ↔ + :((∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) × (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))) |
42 | 38, 41 | mpbird 258 | . 2 ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
43 | 39 | feq3d 6361 | . 2 ⊢ (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐵 ↔ + :(𝐵 × 𝐵)⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))) |
44 | 42, 43 | mpbird 258 | 1 ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1520 ∈ wcel 2079 Vcvv 3432 ∩ cin 3853 ⊆ wss 3854 ∪ cuni 4739 × cxp 5433 “ cima 5438 ⟶wf 6213 ‘cfv 6217 (class class class)co 7007 Er wer 8127 / cqs 8129 Basecbs 16300 +gcplusg 16382 /s cqus 16595 TopOnctopon 21190 Cn ccn 21504 IIcii 23154 ≃phcphtpc 23244 *𝑝cpco 23275 Ω1 comi 23276 π1 cpi1 23278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 ax-pre-sup 10450 ax-mulf 10452 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-iin 4822 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-se 5395 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-isom 6226 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-of 7258 df-om 7428 df-1st 7536 df-2nd 7537 df-supp 7673 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-1o 7944 df-2o 7945 df-oadd 7948 df-er 8130 df-ec 8132 df-qs 8136 df-map 8249 df-ixp 8301 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-fsupp 8670 df-fi 8711 df-sup 8742 df-inf 8743 df-oi 8810 df-card 9203 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-div 11135 df-nn 11476 df-2 11537 df-3 11538 df-4 11539 df-5 11540 df-6 11541 df-7 11542 df-8 11543 df-9 11544 df-n0 11735 df-z 11819 df-dec 11937 df-uz 12083 df-q 12187 df-rp 12229 df-xneg 12346 df-xadd 12347 df-xmul 12348 df-ioo 12581 df-icc 12584 df-fz 12732 df-fzo 12873 df-seq 13208 df-exp 13268 df-hash 13529 df-cj 14280 df-re 14281 df-im 14282 df-sqrt 14416 df-abs 14417 df-struct 16302 df-ndx 16303 df-slot 16304 df-base 16306 df-sets 16307 df-ress 16308 df-plusg 16395 df-mulr 16396 df-starv 16397 df-sca 16398 df-vsca 16399 df-ip 16400 df-tset 16401 df-ple 16402 df-ds 16404 df-unif 16405 df-hom 16406 df-cco 16407 df-rest 16513 df-topn 16514 df-0g 16532 df-gsum 16533 df-topgen 16534 df-pt 16535 df-prds 16538 df-xrs 16592 df-qtop 16597 df-imas 16598 df-qus 16599 df-xps 16600 df-mre 16674 df-mrc 16675 df-acs 16677 df-mgm 17669 df-sgrp 17711 df-mnd 17722 df-submnd 17763 df-mulg 17970 df-cntz 18176 df-cmn 18623 df-psmet 20207 df-xmet 20208 df-met 20209 df-bl 20210 df-mopn 20211 df-cnfld 20216 df-top 21174 df-topon 21191 df-topsp 21213 df-bases 21226 df-cld 21299 df-cn 21507 df-cnp 21508 df-tx 21842 df-hmeo 22035 df-xms 22601 df-ms 22602 df-tms 22603 df-ii 23156 df-htpy 23245 df-phtpy 23246 df-phtpc 23267 df-pco 23280 df-om1 23281 df-pi1 23283 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |