Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pi1addf | Structured version Visualization version GIF version |
Description: The group operation of π1 is a binary operation. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
elpi1.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
elpi1.b | ⊢ 𝐵 = (Base‘𝐺) |
elpi1.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
elpi1.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
pi1addf.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
pi1addf | ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽)) = ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽))) | |
2 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → (Base‘(𝐽 Ω1 𝑌)) = (Base‘(𝐽 Ω1 𝑌))) | |
3 | fvexd 6771 | . . . . . 6 ⊢ (𝜑 → ( ≃ph‘𝐽) ∈ V) | |
4 | ovexd 7290 | . . . . . 6 ⊢ (𝜑 → (𝐽 Ω1 𝑌) ∈ V) | |
5 | elpi1.g | . . . . . . . 8 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
6 | elpi1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
7 | elpi1.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
8 | eqid 2738 | . . . . . . . 8 ⊢ (𝐽 Ω1 𝑌) = (𝐽 Ω1 𝑌) | |
9 | elpi1.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
10 | 9 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
11 | 5, 6, 7, 8, 10, 2 | pi1blem 24108 | . . . . . . 7 ⊢ (𝜑 → ((( ≃ph‘𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌)) ∧ (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽))) |
12 | 11 | simpld 494 | . . . . . 6 ⊢ (𝜑 → (( ≃ph‘𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌))) |
13 | 1, 2, 3, 4, 12 | qusin 17172 | . . . . 5 ⊢ (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽)) = ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))))) |
14 | 5, 6, 7, 8 | pi1val 24106 | . . . . 5 ⊢ (𝜑 → 𝐺 = ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽))) |
15 | 5, 6, 7, 8, 10, 2 | pi1buni 24109 | . . . . . . . 8 ⊢ (𝜑 → ∪ 𝐵 = (Base‘(𝐽 Ω1 𝑌))) |
16 | 15 | sqxpeqd 5612 | . . . . . . 7 ⊢ (𝜑 → (∪ 𝐵 × ∪ 𝐵) = ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))) |
17 | 16 | ineq2d 4143 | . . . . . 6 ⊢ (𝜑 → (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) = (( ≃ph‘𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))) |
18 | 17 | oveq2d 7271 | . . . . 5 ⊢ (𝜑 → ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) = ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))))) |
19 | 13, 14, 18 | 3eqtr4d 2788 | . . . 4 ⊢ (𝜑 → 𝐺 = ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
20 | phtpcer 24064 | . . . . . 6 ⊢ ( ≃ph‘𝐽) Er (II Cn 𝐽) | |
21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → ( ≃ph‘𝐽) Er (II Cn 𝐽)) |
22 | 11 | simprd 495 | . . . . . 6 ⊢ (𝜑 → (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽)) |
23 | 15, 22 | eqsstrd 3955 | . . . . 5 ⊢ (𝜑 → ∪ 𝐵 ⊆ (II Cn 𝐽)) |
24 | 21, 23 | erinxp 8538 | . . . 4 ⊢ (𝜑 → (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) Er ∪ 𝐵) |
25 | eqid 2738 | . . . . 5 ⊢ (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) | |
26 | eqid 2738 | . . . . 5 ⊢ (+g‘(𝐽 Ω1 𝑌)) = (+g‘(𝐽 Ω1 𝑌)) | |
27 | 5, 6, 7, 10, 25, 8, 26 | pi1cpbl 24113 | . . . 4 ⊢ (𝜑 → ((𝑎(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑐 ∧ 𝑏(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑑) → (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑))) |
28 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝐽 ∈ (TopOn‘𝑋)) |
29 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝑌 ∈ 𝑋) |
30 | 8, 28, 29 | om1plusg 24103 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (*𝑝‘𝐽) = (+g‘(𝐽 Ω1 𝑌))) |
31 | 30 | oveqd 7272 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (𝑐(*𝑝‘𝐽)𝑑) = (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)) |
32 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → ∪ 𝐵 = (Base‘(𝐽 Ω1 𝑌))) |
33 | simprl 767 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝑐 ∈ ∪ 𝐵) | |
34 | simprr 769 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝑑 ∈ ∪ 𝐵) | |
35 | 8, 28, 29, 32, 33, 34 | om1addcl 24102 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (𝑐(*𝑝‘𝐽)𝑑) ∈ ∪ 𝐵) |
36 | 31, 35 | eqeltrrd 2840 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑) ∈ ∪ 𝐵) |
37 | pi1addf.p | . . . 4 ⊢ + = (+g‘𝐺) | |
38 | 19, 15, 24, 4, 27, 36, 26, 37 | qusaddf 17182 | . . 3 ⊢ (𝜑 → + :((∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) × (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
39 | 5, 6, 7, 10, 25 | pi1bas3 24112 | . . . . 5 ⊢ (𝜑 → 𝐵 = (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
40 | 39 | sqxpeqd 5612 | . . . 4 ⊢ (𝜑 → (𝐵 × 𝐵) = ((∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) × (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))) |
41 | 40 | feq2d 6570 | . . 3 ⊢ (𝜑 → ( + :(𝐵 × 𝐵)⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) ↔ + :((∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) × (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))) |
42 | 38, 41 | mpbird 256 | . 2 ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
43 | 39 | feq3d 6571 | . 2 ⊢ (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐵 ↔ + :(𝐵 × 𝐵)⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))) |
44 | 42, 43 | mpbird 256 | 1 ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∪ cuni 4836 × cxp 5578 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Er wer 8453 / cqs 8455 Basecbs 16840 +gcplusg 16888 /s cqus 17133 TopOnctopon 21967 Cn ccn 22283 IIcii 23944 ≃phcphtpc 24038 *𝑝cpco 24069 Ω1 comi 24070 π1 cpi1 24072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-qus 17137 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-cn 22286 df-cnp 22287 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 df-ii 23946 df-htpy 24039 df-phtpy 24040 df-phtpc 24061 df-pco 24074 df-om1 24075 df-pi1 24077 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |