MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1addf Structured version   Visualization version   GIF version

Theorem pi1addf 23898
Description: The group operation of π1 is a binary operation. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
elpi1.g 𝐺 = (𝐽 π1 𝑌)
elpi1.b 𝐵 = (Base‘𝐺)
elpi1.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
elpi1.2 (𝜑𝑌𝑋)
pi1addf.p + = (+g𝐺)
Assertion
Ref Expression
pi1addf (𝜑+ :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem pi1addf
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . . . . . 6 (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)) = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
2 eqidd 2737 . . . . . 6 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) = (Base‘(𝐽 Ω1 𝑌)))
3 fvexd 6710 . . . . . 6 (𝜑 → ( ≃ph𝐽) ∈ V)
4 ovexd 7226 . . . . . 6 (𝜑 → (𝐽 Ω1 𝑌) ∈ V)
5 elpi1.g . . . . . . . 8 𝐺 = (𝐽 π1 𝑌)
6 elpi1.1 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
7 elpi1.2 . . . . . . . 8 (𝜑𝑌𝑋)
8 eqid 2736 . . . . . . . 8 (𝐽 Ω1 𝑌) = (𝐽 Ω1 𝑌)
9 elpi1.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
109a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
115, 6, 7, 8, 10, 2pi1blem 23890 . . . . . . 7 (𝜑 → ((( ≃ph𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌)) ∧ (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽)))
1211simpld 498 . . . . . 6 (𝜑 → (( ≃ph𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌)))
131, 2, 3, 4, 12qusin 17003 . . . . 5 (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)) = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))))
145, 6, 7, 8pi1val 23888 . . . . 5 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
155, 6, 7, 8, 10, 2pi1buni 23891 . . . . . . . 8 (𝜑 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
1615sqxpeqd 5568 . . . . . . 7 (𝜑 → ( 𝐵 × 𝐵) = ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))
1716ineq2d 4113 . . . . . 6 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))))
1817oveq2d 7207 . . . . 5 (𝜑 → ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))))
1913, 14, 183eqtr4d 2781 . . . 4 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
20 phtpcer 23846 . . . . . 6 ( ≃ph𝐽) Er (II Cn 𝐽)
2120a1i 11 . . . . 5 (𝜑 → ( ≃ph𝐽) Er (II Cn 𝐽))
2211simprd 499 . . . . . 6 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽))
2315, 22eqsstrd 3925 . . . . 5 (𝜑 𝐵 ⊆ (II Cn 𝐽))
2421, 23erinxp 8451 . . . 4 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) Er 𝐵)
25 eqid 2736 . . . . 5 (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
26 eqid 2736 . . . . 5 (+g‘(𝐽 Ω1 𝑌)) = (+g‘(𝐽 Ω1 𝑌))
275, 6, 7, 10, 25, 8, 26pi1cpbl 23895 . . . 4 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
286adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝐽 ∈ (TopOn‘𝑋))
297adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑌𝑋)
308, 28, 29om1plusg 23885 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (*𝑝𝐽) = (+g‘(𝐽 Ω1 𝑌)))
3130oveqd 7208 . . . . 5 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(*𝑝𝐽)𝑑) = (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑))
3215adantr 484 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
33 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑐 𝐵)
34 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑑 𝐵)
358, 28, 29, 32, 33, 34om1addcl 23884 . . . . 5 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(*𝑝𝐽)𝑑) ∈ 𝐵)
3631, 35eqeltrrd 2832 . . . 4 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑) ∈ 𝐵)
37 pi1addf.p . . . 4 + = (+g𝐺)
3819, 15, 24, 4, 27, 36, 26, 37qusaddf 17013 . . 3 (𝜑+ :(( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) × ( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))⟶( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
395, 6, 7, 10, 25pi1bas3 23894 . . . . 5 (𝜑𝐵 = ( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
4039sqxpeqd 5568 . . . 4 (𝜑 → (𝐵 × 𝐵) = (( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) × ( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))))
4140feq2d 6509 . . 3 (𝜑 → ( + :(𝐵 × 𝐵)⟶( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) ↔ + :(( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) × ( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))⟶( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))))
4238, 41mpbird 260 . 2 (𝜑+ :(𝐵 × 𝐵)⟶( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
4339feq3d 6510 . 2 (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐵+ :(𝐵 × 𝐵)⟶( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))))
4442, 43mpbird 260 1 (𝜑+ :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3398  cin 3852  wss 3853   cuni 4805   × cxp 5534  cima 5539  wf 6354  cfv 6358  (class class class)co 7191   Er wer 8366   / cqs 8368  Basecbs 16666  +gcplusg 16749   /s cqus 16964  TopOnctopon 21761   Cn ccn 22075  IIcii 23726  phcphtpc 23820  *𝑝cpco 23851   Ω1 comi 23852   π1 cpi1 23854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-ec 8371  df-qs 8375  df-map 8488  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-icc 12907  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-xrs 16961  df-qtop 16966  df-imas 16967  df-qus 16968  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-mulg 18443  df-cntz 18665  df-cmn 19126  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-cn 22078  df-cnp 22079  df-tx 22413  df-hmeo 22606  df-xms 23172  df-ms 23173  df-tms 23174  df-ii 23728  df-htpy 23821  df-phtpy 23822  df-phtpc 23843  df-pco 23856  df-om1 23857  df-pi1 23859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator