| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pi1addf | Structured version Visualization version GIF version | ||
| Description: The group operation of π1 is a binary operation. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| elpi1.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
| elpi1.b | ⊢ 𝐵 = (Base‘𝐺) |
| elpi1.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| elpi1.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| pi1addf.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| pi1addf | ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2736 | . . . . . 6 ⊢ (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽)) = ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽))) | |
| 2 | eqidd 2736 | . . . . . 6 ⊢ (𝜑 → (Base‘(𝐽 Ω1 𝑌)) = (Base‘(𝐽 Ω1 𝑌))) | |
| 3 | fvexd 6891 | . . . . . 6 ⊢ (𝜑 → ( ≃ph‘𝐽) ∈ V) | |
| 4 | ovexd 7440 | . . . . . 6 ⊢ (𝜑 → (𝐽 Ω1 𝑌) ∈ V) | |
| 5 | elpi1.g | . . . . . . . 8 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
| 6 | elpi1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 7 | elpi1.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 8 | eqid 2735 | . . . . . . . 8 ⊢ (𝐽 Ω1 𝑌) = (𝐽 Ω1 𝑌) | |
| 9 | elpi1.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
| 10 | 9 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| 11 | 5, 6, 7, 8, 10, 2 | pi1blem 24990 | . . . . . . 7 ⊢ (𝜑 → ((( ≃ph‘𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌)) ∧ (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽))) |
| 12 | 11 | simpld 494 | . . . . . 6 ⊢ (𝜑 → (( ≃ph‘𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌))) |
| 13 | 1, 2, 3, 4, 12 | qusin 17558 | . . . . 5 ⊢ (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽)) = ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))))) |
| 14 | 5, 6, 7, 8 | pi1val 24988 | . . . . 5 ⊢ (𝜑 → 𝐺 = ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽))) |
| 15 | 5, 6, 7, 8, 10, 2 | pi1buni 24991 | . . . . . . . 8 ⊢ (𝜑 → ∪ 𝐵 = (Base‘(𝐽 Ω1 𝑌))) |
| 16 | 15 | sqxpeqd 5686 | . . . . . . 7 ⊢ (𝜑 → (∪ 𝐵 × ∪ 𝐵) = ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))) |
| 17 | 16 | ineq2d 4195 | . . . . . 6 ⊢ (𝜑 → (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) = (( ≃ph‘𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))) |
| 18 | 17 | oveq2d 7421 | . . . . 5 ⊢ (𝜑 → ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) = ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))))) |
| 19 | 13, 14, 18 | 3eqtr4d 2780 | . . . 4 ⊢ (𝜑 → 𝐺 = ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
| 20 | phtpcer 24945 | . . . . . 6 ⊢ ( ≃ph‘𝐽) Er (II Cn 𝐽) | |
| 21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → ( ≃ph‘𝐽) Er (II Cn 𝐽)) |
| 22 | 11 | simprd 495 | . . . . . 6 ⊢ (𝜑 → (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽)) |
| 23 | 15, 22 | eqsstrd 3993 | . . . . 5 ⊢ (𝜑 → ∪ 𝐵 ⊆ (II Cn 𝐽)) |
| 24 | 21, 23 | erinxp 8805 | . . . 4 ⊢ (𝜑 → (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) Er ∪ 𝐵) |
| 25 | eqid 2735 | . . . . 5 ⊢ (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) | |
| 26 | eqid 2735 | . . . . 5 ⊢ (+g‘(𝐽 Ω1 𝑌)) = (+g‘(𝐽 Ω1 𝑌)) | |
| 27 | 5, 6, 7, 10, 25, 8, 26 | pi1cpbl 24995 | . . . 4 ⊢ (𝜑 → ((𝑎(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑐 ∧ 𝑏(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑑) → (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑))) |
| 28 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 29 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝑌 ∈ 𝑋) |
| 30 | 8, 28, 29 | om1plusg 24985 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (*𝑝‘𝐽) = (+g‘(𝐽 Ω1 𝑌))) |
| 31 | 30 | oveqd 7422 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (𝑐(*𝑝‘𝐽)𝑑) = (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)) |
| 32 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → ∪ 𝐵 = (Base‘(𝐽 Ω1 𝑌))) |
| 33 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝑐 ∈ ∪ 𝐵) | |
| 34 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝑑 ∈ ∪ 𝐵) | |
| 35 | 8, 28, 29, 32, 33, 34 | om1addcl 24984 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (𝑐(*𝑝‘𝐽)𝑑) ∈ ∪ 𝐵) |
| 36 | 31, 35 | eqeltrrd 2835 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑) ∈ ∪ 𝐵) |
| 37 | pi1addf.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 38 | 19, 15, 24, 4, 27, 36, 26, 37 | qusaddf 17568 | . . 3 ⊢ (𝜑 → + :((∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) × (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
| 39 | 5, 6, 7, 10, 25 | pi1bas3 24994 | . . . . 5 ⊢ (𝜑 → 𝐵 = (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
| 40 | 39 | sqxpeqd 5686 | . . . 4 ⊢ (𝜑 → (𝐵 × 𝐵) = ((∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) × (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))) |
| 41 | 40 | feq2d 6692 | . . 3 ⊢ (𝜑 → ( + :(𝐵 × 𝐵)⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) ↔ + :((∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) × (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))) |
| 42 | 38, 41 | mpbird 257 | . 2 ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
| 43 | 39 | feq3d 6693 | . 2 ⊢ (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐵 ↔ + :(𝐵 × 𝐵)⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))) |
| 44 | 42, 43 | mpbird 257 | 1 ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 ∪ cuni 4883 × cxp 5652 “ cima 5657 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Er wer 8716 / cqs 8718 Basecbs 17228 +gcplusg 17271 /s cqus 17519 TopOnctopon 22848 Cn ccn 23162 IIcii 24819 ≃phcphtpc 24919 *𝑝cpco 24951 Ω1 comi 24952 π1 cpi1 24954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-ec 8721 df-qs 8725 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-qus 17523 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-cn 23165 df-cnp 23166 df-tx 23500 df-hmeo 23693 df-xms 24259 df-ms 24260 df-tms 24261 df-ii 24821 df-htpy 24920 df-phtpy 24921 df-phtpc 24942 df-pco 24956 df-om1 24957 df-pi1 24959 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |