| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pi1addf | Structured version Visualization version GIF version | ||
| Description: The group operation of π1 is a binary operation. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| elpi1.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
| elpi1.b | ⊢ 𝐵 = (Base‘𝐺) |
| elpi1.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| elpi1.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| pi1addf.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| pi1addf | ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . . . . . 6 ⊢ (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽)) = ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽))) | |
| 2 | eqidd 2732 | . . . . . 6 ⊢ (𝜑 → (Base‘(𝐽 Ω1 𝑌)) = (Base‘(𝐽 Ω1 𝑌))) | |
| 3 | fvexd 6837 | . . . . . 6 ⊢ (𝜑 → ( ≃ph‘𝐽) ∈ V) | |
| 4 | ovexd 7381 | . . . . . 6 ⊢ (𝜑 → (𝐽 Ω1 𝑌) ∈ V) | |
| 5 | elpi1.g | . . . . . . . 8 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
| 6 | elpi1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 7 | elpi1.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 8 | eqid 2731 | . . . . . . . 8 ⊢ (𝐽 Ω1 𝑌) = (𝐽 Ω1 𝑌) | |
| 9 | elpi1.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
| 10 | 9 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| 11 | 5, 6, 7, 8, 10, 2 | pi1blem 24966 | . . . . . . 7 ⊢ (𝜑 → ((( ≃ph‘𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌)) ∧ (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽))) |
| 12 | 11 | simpld 494 | . . . . . 6 ⊢ (𝜑 → (( ≃ph‘𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌))) |
| 13 | 1, 2, 3, 4, 12 | qusin 17448 | . . . . 5 ⊢ (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽)) = ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))))) |
| 14 | 5, 6, 7, 8 | pi1val 24964 | . . . . 5 ⊢ (𝜑 → 𝐺 = ((𝐽 Ω1 𝑌) /s ( ≃ph‘𝐽))) |
| 15 | 5, 6, 7, 8, 10, 2 | pi1buni 24967 | . . . . . . . 8 ⊢ (𝜑 → ∪ 𝐵 = (Base‘(𝐽 Ω1 𝑌))) |
| 16 | 15 | sqxpeqd 5646 | . . . . . . 7 ⊢ (𝜑 → (∪ 𝐵 × ∪ 𝐵) = ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))) |
| 17 | 16 | ineq2d 4167 | . . . . . 6 ⊢ (𝜑 → (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) = (( ≃ph‘𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))) |
| 18 | 17 | oveq2d 7362 | . . . . 5 ⊢ (𝜑 → ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) = ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))))) |
| 19 | 13, 14, 18 | 3eqtr4d 2776 | . . . 4 ⊢ (𝜑 → 𝐺 = ((𝐽 Ω1 𝑌) /s (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
| 20 | phtpcer 24921 | . . . . . 6 ⊢ ( ≃ph‘𝐽) Er (II Cn 𝐽) | |
| 21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → ( ≃ph‘𝐽) Er (II Cn 𝐽)) |
| 22 | 11 | simprd 495 | . . . . . 6 ⊢ (𝜑 → (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽)) |
| 23 | 15, 22 | eqsstrd 3964 | . . . . 5 ⊢ (𝜑 → ∪ 𝐵 ⊆ (II Cn 𝐽)) |
| 24 | 21, 23 | erinxp 8715 | . . . 4 ⊢ (𝜑 → (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) Er ∪ 𝐵) |
| 25 | eqid 2731 | . . . . 5 ⊢ (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) | |
| 26 | eqid 2731 | . . . . 5 ⊢ (+g‘(𝐽 Ω1 𝑌)) = (+g‘(𝐽 Ω1 𝑌)) | |
| 27 | 5, 6, 7, 10, 25, 8, 26 | pi1cpbl 24971 | . . . 4 ⊢ (𝜑 → ((𝑎(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑐 ∧ 𝑏(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑑) → (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑))) |
| 28 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 29 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝑌 ∈ 𝑋) |
| 30 | 8, 28, 29 | om1plusg 24961 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (*𝑝‘𝐽) = (+g‘(𝐽 Ω1 𝑌))) |
| 31 | 30 | oveqd 7363 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (𝑐(*𝑝‘𝐽)𝑑) = (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)) |
| 32 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → ∪ 𝐵 = (Base‘(𝐽 Ω1 𝑌))) |
| 33 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝑐 ∈ ∪ 𝐵) | |
| 34 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → 𝑑 ∈ ∪ 𝐵) | |
| 35 | 8, 28, 29, 32, 33, 34 | om1addcl 24960 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (𝑐(*𝑝‘𝐽)𝑑) ∈ ∪ 𝐵) |
| 36 | 31, 35 | eqeltrrd 2832 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵)) → (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑) ∈ ∪ 𝐵) |
| 37 | pi1addf.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 38 | 19, 15, 24, 4, 27, 36, 26, 37 | qusaddf 17458 | . . 3 ⊢ (𝜑 → + :((∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) × (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
| 39 | 5, 6, 7, 10, 25 | pi1bas3 24970 | . . . . 5 ⊢ (𝜑 → 𝐵 = (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
| 40 | 39 | sqxpeqd 5646 | . . . 4 ⊢ (𝜑 → (𝐵 × 𝐵) = ((∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) × (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))) |
| 41 | 40 | feq2d 6635 | . . 3 ⊢ (𝜑 → ( + :(𝐵 × 𝐵)⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) ↔ + :((∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))) × (∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))) |
| 42 | 38, 41 | mpbird 257 | . 2 ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)))) |
| 43 | 39 | feq3d 6636 | . 2 ⊢ (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐵 ↔ + :(𝐵 × 𝐵)⟶(∪ 𝐵 / (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))))) |
| 44 | 42, 43 | mpbird 257 | 1 ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 ∪ cuni 4856 × cxp 5612 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Er wer 8619 / cqs 8621 Basecbs 17120 +gcplusg 17161 /s cqus 17409 TopOnctopon 22825 Cn ccn 23139 IIcii 24795 ≃phcphtpc 24895 *𝑝cpco 24927 Ω1 comi 24928 π1 cpi1 24930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-qus 17413 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-cn 23142 df-cnp 23143 df-tx 23477 df-hmeo 23670 df-xms 24235 df-ms 24236 df-tms 24237 df-ii 24797 df-htpy 24896 df-phtpy 24897 df-phtpc 24918 df-pco 24932 df-om1 24933 df-pi1 24935 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |