| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupthistrl | Structured version Visualization version GIF version | ||
| Description: An Eulerian path is a trail. (Contributed by Alexander van der Vekens, 24-Nov-2017.) (Revised by AV, 18-Feb-2021.) |
| Ref | Expression |
|---|---|
| eupthistrl | ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 2 | 1 | iseupth 30130 | . 2 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–onto→dom (iEdg‘𝐺))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5107 dom cdm 5638 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ..^cfzo 13615 ♯chash 14295 iEdgciedg 28924 Trailsctrls 29618 EulerPathsceupth 30126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fo 6517 df-fv 6519 df-ov 7390 df-trls 29620 df-eupth 30127 |
| This theorem is referenced by: eupthiswlk 30141 eupthres 30144 eupth2eucrct 30146 eupth2lem3 30165 |
| Copyright terms: Public domain | W3C validator |