Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eupthres | Structured version Visualization version GIF version |
Description: The restriction 〈𝐻, 𝑄〉 of an Eulerian path 〈𝐹, 𝑃〉 to an initial segment of the path (of length 𝑁) forms an Eulerian path on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
Ref | Expression |
---|---|
eupth0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
eupth0.i | ⊢ 𝐼 = (iEdg‘𝐺) |
eupthres.d | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
eupthres.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
eupthres.e | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
eupthres.h | ⊢ 𝐻 = (𝐹 prefix 𝑁) |
eupthres.q | ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
eupthres.s | ⊢ (Vtx‘𝑆) = 𝑉 |
Ref | Expression |
---|---|
eupthres | ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupth0.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eupth0.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | eupthres.d | . . . 4 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
4 | eupthistrl 28863 | . . . 4 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
5 | trliswlk 28353 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
7 | eupthres.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
8 | eupthres.s | . . . 4 ⊢ (Vtx‘𝑆) = 𝑉 | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
10 | eupthres.e | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
11 | eupthres.h | . . 3 ⊢ 𝐻 = (𝐹 prefix 𝑁) | |
12 | eupthres.q | . . 3 ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) | |
13 | 1, 2, 6, 7, 9, 10, 11, 12 | wlkres 28326 | . 2 ⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) |
14 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
15 | 1, 2, 14, 7, 11 | trlreslem 28355 | . 2 ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
16 | eqid 2736 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
17 | 16 | iseupthf1o 28854 | . . 3 ⊢ (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆))) |
18 | 10 | dmeqd 5847 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
19 | 18 | f1oeq3d 6764 | . . . 4 ⊢ (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆) ↔ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))) |
20 | 19 | anbi2d 629 | . . 3 ⊢ (𝜑 → ((𝐻(Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆)) ↔ (𝐻(Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))) |
21 | 17, 20 | bitrid 282 | . 2 ⊢ (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))) |
22 | 13, 15, 21 | mpbir2and 710 | 1 ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5092 dom cdm 5620 ↾ cres 5622 “ cima 5623 –1-1-onto→wf1o 6478 ‘cfv 6479 (class class class)co 7337 0cc0 10972 ...cfz 13340 ..^cfzo 13483 ♯chash 14145 prefix cpfx 14481 Vtxcvtx 27655 iEdgciedg 27656 Walkscwlks 28252 Trailsctrls 28346 EulerPathsceupth 28849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-pm 8689 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-fzo 13484 df-hash 14146 df-word 14318 df-substr 14452 df-pfx 14482 df-wlks 28255 df-trls 28348 df-eupth 28850 |
This theorem is referenced by: eucrct2eupth1 28896 |
Copyright terms: Public domain | W3C validator |