| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupthres | Structured version Visualization version GIF version | ||
| Description: The restriction 〈𝐻, 𝑄〉 of an Eulerian path 〈𝐹, 𝑃〉 to an initial segment of the path (of length 𝑁) forms an Eulerian path on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| Ref | Expression |
|---|---|
| eupth0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| eupth0.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| eupthres.d | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
| eupthres.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| eupthres.e | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| eupthres.h | ⊢ 𝐻 = (𝐹 prefix 𝑁) |
| eupthres.q | ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
| eupthres.s | ⊢ (Vtx‘𝑆) = 𝑉 |
| Ref | Expression |
|---|---|
| eupthres | ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupth0.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eupth0.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | eupthres.d | . . . 4 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
| 4 | eupthistrl 30140 | . . . 4 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
| 5 | trliswlk 29625 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 7 | eupthres.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
| 8 | eupthres.s | . . . 4 ⊢ (Vtx‘𝑆) = 𝑉 | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| 10 | eupthres.e | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
| 11 | eupthres.h | . . 3 ⊢ 𝐻 = (𝐹 prefix 𝑁) | |
| 12 | eupthres.q | . . 3 ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) | |
| 13 | 1, 2, 6, 7, 9, 10, 11, 12 | wlkres 29598 | . 2 ⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) |
| 14 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| 15 | 1, 2, 14, 7, 11 | trlreslem 29627 | . 2 ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 16 | eqid 2729 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
| 17 | 16 | iseupthf1o 30131 | . . 3 ⊢ (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆))) |
| 18 | 10 | dmeqd 5869 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 19 | 18 | f1oeq3d 6797 | . . . 4 ⊢ (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆) ↔ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))) |
| 20 | 19 | anbi2d 630 | . . 3 ⊢ (𝜑 → ((𝐻(Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆)) ↔ (𝐻(Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))) |
| 21 | 17, 20 | bitrid 283 | . 2 ⊢ (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))) |
| 22 | 13, 15, 21 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 dom cdm 5638 ↾ cres 5640 “ cima 5641 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ...cfz 13468 ..^cfzo 13615 ♯chash 14295 prefix cpfx 14635 Vtxcvtx 28923 iEdgciedg 28924 Walkscwlks 29524 Trailsctrls 29618 EulerPathsceupth 30126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-substr 14606 df-pfx 14636 df-wlks 29527 df-trls 29620 df-eupth 30127 |
| This theorem is referenced by: eucrct2eupth1 30173 |
| Copyright terms: Public domain | W3C validator |