![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eupthres | Structured version Visualization version GIF version |
Description: The restriction 〈𝐻, 𝑄〉 of an Eulerian path 〈𝐹, 𝑃〉 to an initial segment of the path (of length 𝑁) forms an Eulerian path on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
Ref | Expression |
---|---|
eupth0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
eupth0.i | ⊢ 𝐼 = (iEdg‘𝐺) |
eupthres.d | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
eupthres.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
eupthres.e | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
eupthres.h | ⊢ 𝐻 = (𝐹 prefix 𝑁) |
eupthres.q | ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
eupthres.s | ⊢ (Vtx‘𝑆) = 𝑉 |
Ref | Expression |
---|---|
eupthres | ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupth0.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eupth0.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | eupthres.d | . . . 4 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
4 | eupthistrl 30240 | . . . 4 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
5 | trliswlk 29730 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
7 | eupthres.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
8 | eupthres.s | . . . 4 ⊢ (Vtx‘𝑆) = 𝑉 | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
10 | eupthres.e | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
11 | eupthres.h | . . 3 ⊢ 𝐻 = (𝐹 prefix 𝑁) | |
12 | eupthres.q | . . 3 ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) | |
13 | 1, 2, 6, 7, 9, 10, 11, 12 | wlkres 29703 | . 2 ⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) |
14 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
15 | 1, 2, 14, 7, 11 | trlreslem 29732 | . 2 ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
16 | eqid 2735 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
17 | 16 | iseupthf1o 30231 | . . 3 ⊢ (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆))) |
18 | 10 | dmeqd 5919 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
19 | 18 | f1oeq3d 6846 | . . . 4 ⊢ (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆) ↔ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))) |
20 | 19 | anbi2d 630 | . . 3 ⊢ (𝜑 → ((𝐻(Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆)) ↔ (𝐻(Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))) |
21 | 17, 20 | bitrid 283 | . 2 ⊢ (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))) |
22 | 13, 15, 21 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 dom cdm 5689 ↾ cres 5691 “ cima 5692 –1-1-onto→wf1o 6562 ‘cfv 6563 (class class class)co 7431 0cc0 11153 ...cfz 13544 ..^cfzo 13691 ♯chash 14366 prefix cpfx 14705 Vtxcvtx 29028 iEdgciedg 29029 Walkscwlks 29629 Trailsctrls 29723 EulerPathsceupth 30226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-substr 14676 df-pfx 14706 df-wlks 29632 df-trls 29725 df-eupth 30227 |
This theorem is referenced by: eucrct2eupth1 30273 |
Copyright terms: Public domain | W3C validator |