MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthres Structured version   Visualization version   GIF version

Theorem eupthres 30195
Description: The restriction 𝐻, 𝑄 of an Eulerian path 𝐹, 𝑃 to an initial segment of the path (of length 𝑁) forms an Eulerian path on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
eupth0.v 𝑉 = (Vtx‘𝐺)
eupth0.i 𝐼 = (iEdg‘𝐺)
eupthres.d (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthres.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
eupthres.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
eupthres.h 𝐻 = (𝐹 prefix 𝑁)
eupthres.q 𝑄 = (𝑃 ↾ (0...𝑁))
eupthres.s (Vtx‘𝑆) = 𝑉
Assertion
Ref Expression
eupthres (𝜑𝐻(EulerPaths‘𝑆)𝑄)

Proof of Theorem eupthres
StepHypRef Expression
1 eupth0.v . . 3 𝑉 = (Vtx‘𝐺)
2 eupth0.i . . 3 𝐼 = (iEdg‘𝐺)
3 eupthres.d . . . 4 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
4 eupthistrl 30191 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
5 trliswlk 29674 . . . 4 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
63, 4, 53syl 18 . . 3 (𝜑𝐹(Walks‘𝐺)𝑃)
7 eupthres.n . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
8 eupthres.s . . . 4 (Vtx‘𝑆) = 𝑉
98a1i 11 . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
10 eupthres.e . . 3 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
11 eupthres.h . . 3 𝐻 = (𝐹 prefix 𝑁)
12 eupthres.q . . 3 𝑄 = (𝑃 ↾ (0...𝑁))
131, 2, 6, 7, 9, 10, 11, 12wlkres 29647 . 2 (𝜑𝐻(Walks‘𝑆)𝑄)
143, 4syl 17 . . 3 (𝜑𝐹(Trails‘𝐺)𝑃)
151, 2, 14, 7, 11trlreslem 29676 . 2 (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
16 eqid 2731 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
1716iseupthf1o 30182 . . 3 (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆)))
1810dmeqd 5844 . . . . 5 (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
1918f1oeq3d 6760 . . . 4 (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆) ↔ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))
2019anbi2d 630 . . 3 (𝜑 → ((𝐻(Walks‘𝑆)𝑄𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆)) ↔ (𝐻(Walks‘𝑆)𝑄𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))))
2117, 20bitrid 283 . 2 (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))))
2213, 15, 21mpbir2and 713 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  dom cdm 5614  cres 5616  cima 5617  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  0cc0 11006  ...cfz 13407  ..^cfzo 13554  chash 14237   prefix cpfx 14578  Vtxcvtx 28974  iEdgciedg 28975  Walkscwlks 29575  Trailsctrls 29667  EulerPathsceupth 30177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-substr 14549  df-pfx 14579  df-wlks 29578  df-trls 29669  df-eupth 30178
This theorem is referenced by:  eucrct2eupth1  30224
  Copyright terms: Public domain W3C validator