MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthiswlk Structured version   Visualization version   GIF version

Theorem eupthiswlk 30196
Description: An Eulerian path is a walk. (Contributed by AV, 6-Apr-2021.)
Assertion
Ref Expression
eupthiswlk (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)

Proof of Theorem eupthiswlk
StepHypRef Expression
1 eupthistrl 30195 . 2 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
2 trliswlk 29678 . 2 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
31, 2syl 17 1 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5095  cfv 6488  Walkscwlks 29579  Trailsctrls 29671  EulerPathsceupth 30181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-fo 6494  df-fv 6496  df-ov 7357  df-wlks 29582  df-trls 29673  df-eupth 30182
This theorem is referenced by:  eupthpf  30197  eupthp1  30200  eupth2eucrct  30201  eupth2lem3  30220  eupth2lems  30222  eupth2  30223  eucrct2eupth1  30228
  Copyright terms: Public domain W3C validator