MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthiswlk Structured version   Visualization version   GIF version

Theorem eupthiswlk 30174
Description: An Eulerian path is a walk. (Contributed by AV, 6-Apr-2021.)
Assertion
Ref Expression
eupthiswlk (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)

Proof of Theorem eupthiswlk
StepHypRef Expression
1 eupthistrl 30173 . 2 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
2 trliswlk 29659 . 2 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
31, 2syl 17 1 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5095  cfv 6486  Walkscwlks 29560  Trailsctrls 29652  EulerPathsceupth 30159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fo 6492  df-fv 6494  df-ov 7356  df-wlks 29563  df-trls 29654  df-eupth 30160
This theorem is referenced by:  eupthpf  30175  eupthp1  30178  eupth2eucrct  30179  eupth2lem3  30198  eupth2lems  30200  eupth2  30201  eucrct2eupth1  30206
  Copyright terms: Public domain W3C validator