MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3 Structured version   Visualization version   GIF version

Theorem eupth2lem3 28887
Description: Lemma for eupth2 28890. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v 𝑉 = (Vtx‘𝐺)
eupth2.i 𝐼 = (iEdg‘𝐺)
eupth2.g (𝜑𝐺 ∈ UPGraph)
eupth2.f (𝜑 → Fun 𝐼)
eupth2.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupth2.h 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩
eupth2.x 𝑋 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩
eupth2.n (𝜑𝑁 ∈ ℕ0)
eupth2.l (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹))
eupth2.u (𝜑𝑈𝑉)
eupth2.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
Assertion
Ref Expression
eupth2lem3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑈   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem eupth2lem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eupth2.v . 2 𝑉 = (Vtx‘𝐺)
2 eupth2.i . 2 𝐼 = (iEdg‘𝐺)
3 eupth2.f . 2 (𝜑 → Fun 𝐼)
4 eupth2.n . . 3 (𝜑𝑁 ∈ ℕ0)
5 eupth2.p . . . 4 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
6 eupthiswlk 28863 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
7 wlkcl 28270 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
85, 6, 73syl 18 . . 3 (𝜑 → (♯‘𝐹) ∈ ℕ0)
9 eupth2.l . . 3 (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹))
10 nn0p1elfzo 13535 . . 3 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0 ∧ (𝑁 + 1) ≤ (♯‘𝐹)) → 𝑁 ∈ (0..^(♯‘𝐹)))
114, 8, 9, 10syl3anc 1371 . 2 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
12 eupth2.u . 2 (𝜑𝑈𝑉)
13 eupthistrl 28862 . . 3 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
145, 13syl 17 . 2 (𝜑𝐹(Trails‘𝐺)𝑃)
15 eupth2.h . . . . 5 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩
1615fveq2i 6832 . . . 4 (Vtx‘𝐻) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩)
171fvexi 6843 . . . . 5 𝑉 ∈ V
182fvexi 6843 . . . . . 6 𝐼 ∈ V
1918resex 5975 . . . . 5 (𝐼 ↾ (𝐹 “ (0..^𝑁))) ∈ V
2017, 19opvtxfvi 27667 . . . 4 (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩) = 𝑉
2116, 20eqtri 2765 . . 3 (Vtx‘𝐻) = 𝑉
2221a1i 11 . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
23 snex 5380 . . . 4 {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} ∈ V
2417, 23opvtxfvi 27667 . . 3 (Vtx‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = 𝑉
2524a1i 11 . 2 (𝜑 → (Vtx‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = 𝑉)
26 eupth2.x . . . . 5 𝑋 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩
2726fveq2i 6832 . . . 4 (Vtx‘𝑋) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩)
2818resex 5975 . . . . 5 (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) ∈ V
2917, 28opvtxfvi 27667 . . . 4 (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩) = 𝑉
3027, 29eqtri 2765 . . 3 (Vtx‘𝑋) = 𝑉
3130a1i 11 . 2 (𝜑 → (Vtx‘𝑋) = 𝑉)
3215fveq2i 6832 . . . 4 (iEdg‘𝐻) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩)
3317, 19opiedgfvi 27668 . . . 4 (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))
3432, 33eqtri 2765 . . 3 (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))
3534a1i 11 . 2 (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
3617, 23opiedgfvi 27668 . . 3 (iEdg‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}
3736a1i 11 . 2 (𝜑 → (iEdg‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
3826fveq2i 6832 . . . 4 (iEdg‘𝑋) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩)
3917, 28opiedgfvi 27668 . . . 4 (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))
4038, 39eqtri 2765 . . 3 (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))
414nn0zd 12529 . . . . . 6 (𝜑𝑁 ∈ ℤ)
42 fzval3 13561 . . . . . . 7 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
4342eqcomd 2743 . . . . . 6 (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁))
4441, 43syl 17 . . . . 5 (𝜑 → (0..^(𝑁 + 1)) = (0...𝑁))
4544imaeq2d 6003 . . . 4 (𝜑 → (𝐹 “ (0..^(𝑁 + 1))) = (𝐹 “ (0...𝑁)))
4645reseq2d 5927 . . 3 (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
4740, 46eqtrid 2789 . 2 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
48 eupth2.o . 2 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
49 2fveq3 6834 . . . 4 (𝑘 = 𝑁 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹𝑁)))
50 fveq2 6829 . . . . 5 (𝑘 = 𝑁 → (𝑃𝑘) = (𝑃𝑁))
51 fvoveq1 7364 . . . . 5 (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1)))
5250, 51preq12d 4693 . . . 4 (𝑘 = 𝑁 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
5349, 52eqeq12d 2753 . . 3 (𝑘 = 𝑁 → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))}))
54 eupth2.g . . . 4 (𝜑𝐺 ∈ UPGraph)
555, 6syl 17 . . . 4 (𝜑𝐹(Walks‘𝐺)𝑃)
562upgrwlkedg 28297 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
5754, 55, 56syl2anc 585 . . 3 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
5853, 57, 11rspcdva 3574 . 2 (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
591, 2, 3, 11, 12, 14, 22, 25, 31, 35, 37, 47, 48, 58eupth2lem3lem7 28885 1 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1541  wcel 2106  wral 3062  {crab 3404  c0 4273  ifcif 4477  {csn 4577  {cpr 4579  cop 4583   class class class wbr 5096  cres 5626  cima 5627  Fun wfun 6477  cfv 6483  (class class class)co 7341  0cc0 10976  1c1 10977   + caddc 10979  cle 11115  2c2 12133  0cn0 12338  cz 12424  ...cfz 13344  ..^cfzo 13487  chash 14149  cdvds 16062  Vtxcvtx 27654  iEdgciedg 27655  UPGraphcupgr 27738  VtxDegcvtxdg 28120  Walkscwlks 28251  Trailsctrls 28345  EulerPathsceupth 28848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-2o 8372  df-oadd 8375  df-er 8573  df-map 8692  df-pm 8693  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-sup 9303  df-inf 9304  df-dju 9762  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-2 12141  df-3 12142  df-n0 12339  df-xnn0 12411  df-z 12425  df-uz 12688  df-rp 12836  df-xadd 12954  df-fz 13345  df-fzo 13488  df-seq 13827  df-exp 13888  df-hash 14150  df-word 14322  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-dvds 16063  df-vtx 27656  df-iedg 27657  df-edg 27706  df-uhgr 27716  df-ushgr 27717  df-upgr 27740  df-uspgr 27808  df-vtxdg 28121  df-wlks 28254  df-trls 28347  df-eupth 28849
This theorem is referenced by:  eupth2lems  28889
  Copyright terms: Public domain W3C validator