Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eupth2lem3 | Structured version Visualization version GIF version |
Description: Lemma for eupth2 28603. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
Ref | Expression |
---|---|
eupth2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
eupth2.i | ⊢ 𝐼 = (iEdg‘𝐺) |
eupth2.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
eupth2.f | ⊢ (𝜑 → Fun 𝐼) |
eupth2.p | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
eupth2.h | ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉 |
eupth2.x | ⊢ 𝑋 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉 |
eupth2.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
eupth2.l | ⊢ (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹)) |
eupth2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
eupth2.o | ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) |
Ref | Expression |
---|---|
eupth2lem3 | ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupth2.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eupth2.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | eupth2.f | . 2 ⊢ (𝜑 → Fun 𝐼) | |
4 | eupth2.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | eupth2.p | . . . 4 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
6 | eupthiswlk 28576 | . . . 4 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
7 | wlkcl 27982 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → (♯‘𝐹) ∈ ℕ0) |
9 | eupth2.l | . . 3 ⊢ (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹)) | |
10 | nn0p1elfzo 13430 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0 ∧ (𝑁 + 1) ≤ (♯‘𝐹)) → 𝑁 ∈ (0..^(♯‘𝐹))) | |
11 | 4, 8, 9, 10 | syl3anc 1370 | . 2 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
12 | eupth2.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
13 | eupthistrl 28575 | . . 3 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
14 | 5, 13 | syl 17 | . 2 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
15 | eupth2.h | . . . . 5 ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉 | |
16 | 15 | fveq2i 6777 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) |
17 | 1 | fvexi 6788 | . . . . 5 ⊢ 𝑉 ∈ V |
18 | 2 | fvexi 6788 | . . . . . 6 ⊢ 𝐼 ∈ V |
19 | 18 | resex 5939 | . . . . 5 ⊢ (𝐼 ↾ (𝐹 “ (0..^𝑁))) ∈ V |
20 | 17, 19 | opvtxfvi 27379 | . . . 4 ⊢ (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) = 𝑉 |
21 | 16, 20 | eqtri 2766 | . . 3 ⊢ (Vtx‘𝐻) = 𝑉 |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
23 | snex 5354 | . . . 4 ⊢ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉} ∈ V | |
24 | 17, 23 | opvtxfvi 27379 | . . 3 ⊢ (Vtx‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = 𝑉 |
25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = 𝑉) |
26 | eupth2.x | . . . . 5 ⊢ 𝑋 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉 | |
27 | 26 | fveq2i 6777 | . . . 4 ⊢ (Vtx‘𝑋) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) |
28 | 18 | resex 5939 | . . . . 5 ⊢ (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) ∈ V |
29 | 17, 28 | opvtxfvi 27379 | . . . 4 ⊢ (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) = 𝑉 |
30 | 27, 29 | eqtri 2766 | . . 3 ⊢ (Vtx‘𝑋) = 𝑉 |
31 | 30 | a1i 11 | . 2 ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
32 | 15 | fveq2i 6777 | . . . 4 ⊢ (iEdg‘𝐻) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) |
33 | 17, 19 | opiedgfvi 27380 | . . . 4 ⊢ (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) = (𝐼 ↾ (𝐹 “ (0..^𝑁))) |
34 | 32, 33 | eqtri 2766 | . . 3 ⊢ (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁))) |
35 | 34 | a1i 11 | . 2 ⊢ (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
36 | 17, 23 | opiedgfvi 27380 | . . 3 ⊢ (iEdg‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉} |
37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
38 | 26 | fveq2i 6777 | . . . 4 ⊢ (iEdg‘𝑋) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) |
39 | 17, 28 | opiedgfvi 27380 | . . . 4 ⊢ (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) |
40 | 38, 39 | eqtri 2766 | . . 3 ⊢ (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) |
41 | 4 | nn0zd 12424 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
42 | fzval3 13456 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1))) | |
43 | 42 | eqcomd 2744 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁)) |
44 | 41, 43 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(𝑁 + 1)) = (0...𝑁)) |
45 | 44 | imaeq2d 5969 | . . . 4 ⊢ (𝜑 → (𝐹 “ (0..^(𝑁 + 1))) = (𝐹 “ (0...𝑁))) |
46 | 45 | reseq2d 5891 | . . 3 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
47 | 40, 46 | eqtrid 2790 | . 2 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
48 | eupth2.o | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) | |
49 | 2fveq3 6779 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘𝑁))) | |
50 | fveq2 6774 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑃‘𝑘) = (𝑃‘𝑁)) | |
51 | fvoveq1 7298 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1))) | |
52 | 50, 51 | preq12d 4677 | . . . 4 ⊢ (𝑘 = 𝑁 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
53 | 49, 52 | eqeq12d 2754 | . . 3 ⊢ (𝑘 = 𝑁 → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))})) |
54 | eupth2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ UPGraph) | |
55 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
56 | 2 | upgrwlkedg 28009 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
57 | 54, 55, 56 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
58 | 53, 57, 11 | rspcdva 3562 | . 2 ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
59 | 1, 2, 3, 11, 12, 14, 22, 25, 31, 35, 37, 47, 48, 58 | eupth2lem3lem7 28598 | 1 ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∅c0 4256 ifcif 4459 {csn 4561 {cpr 4563 〈cop 4567 class class class wbr 5074 ↾ cres 5591 “ cima 5592 Fun wfun 6427 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 ≤ cle 11010 2c2 12028 ℕ0cn0 12233 ℤcz 12319 ...cfz 13239 ..^cfzo 13382 ♯chash 14044 ∥ cdvds 15963 Vtxcvtx 27366 iEdgciedg 27367 UPGraphcupgr 27450 VtxDegcvtxdg 27832 Walkscwlks 27963 Trailsctrls 28058 EulerPathsceupth 28561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-rp 12731 df-xadd 12849 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-word 14218 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-vtx 27368 df-iedg 27369 df-edg 27418 df-uhgr 27428 df-ushgr 27429 df-upgr 27452 df-uspgr 27520 df-vtxdg 27833 df-wlks 27966 df-trls 28060 df-eupth 28562 |
This theorem is referenced by: eupth2lems 28602 |
Copyright terms: Public domain | W3C validator |