| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupth2lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for eupth2 30220. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| Ref | Expression |
|---|---|
| eupth2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| eupth2.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| eupth2.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| eupth2.f | ⊢ (𝜑 → Fun 𝐼) |
| eupth2.p | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
| eupth2.h | ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉 |
| eupth2.x | ⊢ 𝑋 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉 |
| eupth2.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| eupth2.l | ⊢ (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹)) |
| eupth2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| eupth2.o | ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) |
| Ref | Expression |
|---|---|
| eupth2lem3 | ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupth2.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eupth2.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | eupth2.f | . 2 ⊢ (𝜑 → Fun 𝐼) | |
| 4 | eupth2.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 5 | eupth2.p | . . . 4 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
| 6 | eupthiswlk 30193 | . . . 4 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 7 | wlkcl 29595 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → (♯‘𝐹) ∈ ℕ0) |
| 9 | eupth2.l | . . 3 ⊢ (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹)) | |
| 10 | nn0p1elfzo 13719 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0 ∧ (𝑁 + 1) ≤ (♯‘𝐹)) → 𝑁 ∈ (0..^(♯‘𝐹))) | |
| 11 | 4, 8, 9, 10 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| 12 | eupth2.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 13 | eupthistrl 30192 | . . 3 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
| 14 | 5, 13 | syl 17 | . 2 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| 15 | eupth2.h | . . . . 5 ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉 | |
| 16 | 15 | fveq2i 6879 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) |
| 17 | 1 | fvexi 6890 | . . . . 5 ⊢ 𝑉 ∈ V |
| 18 | 2 | fvexi 6890 | . . . . . 6 ⊢ 𝐼 ∈ V |
| 19 | 18 | resex 6016 | . . . . 5 ⊢ (𝐼 ↾ (𝐹 “ (0..^𝑁))) ∈ V |
| 20 | 17, 19 | opvtxfvi 28988 | . . . 4 ⊢ (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) = 𝑉 |
| 21 | 16, 20 | eqtri 2758 | . . 3 ⊢ (Vtx‘𝐻) = 𝑉 |
| 22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| 23 | snex 5406 | . . . 4 ⊢ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉} ∈ V | |
| 24 | 17, 23 | opvtxfvi 28988 | . . 3 ⊢ (Vtx‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = 𝑉 |
| 25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = 𝑉) |
| 26 | eupth2.x | . . . . 5 ⊢ 𝑋 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉 | |
| 27 | 26 | fveq2i 6879 | . . . 4 ⊢ (Vtx‘𝑋) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) |
| 28 | 18 | resex 6016 | . . . . 5 ⊢ (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) ∈ V |
| 29 | 17, 28 | opvtxfvi 28988 | . . . 4 ⊢ (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) = 𝑉 |
| 30 | 27, 29 | eqtri 2758 | . . 3 ⊢ (Vtx‘𝑋) = 𝑉 |
| 31 | 30 | a1i 11 | . 2 ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
| 32 | 15 | fveq2i 6879 | . . . 4 ⊢ (iEdg‘𝐻) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) |
| 33 | 17, 19 | opiedgfvi 28989 | . . . 4 ⊢ (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) = (𝐼 ↾ (𝐹 “ (0..^𝑁))) |
| 34 | 32, 33 | eqtri 2758 | . . 3 ⊢ (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁))) |
| 35 | 34 | a1i 11 | . 2 ⊢ (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 36 | 17, 23 | opiedgfvi 28989 | . . 3 ⊢ (iEdg‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉} |
| 37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
| 38 | 26 | fveq2i 6879 | . . . 4 ⊢ (iEdg‘𝑋) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) |
| 39 | 17, 28 | opiedgfvi 28989 | . . . 4 ⊢ (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) |
| 40 | 38, 39 | eqtri 2758 | . . 3 ⊢ (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) |
| 41 | 4 | nn0zd 12614 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 42 | fzval3 13750 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1))) | |
| 43 | 42 | eqcomd 2741 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁)) |
| 44 | 41, 43 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(𝑁 + 1)) = (0...𝑁)) |
| 45 | 44 | imaeq2d 6047 | . . . 4 ⊢ (𝜑 → (𝐹 “ (0..^(𝑁 + 1))) = (𝐹 “ (0...𝑁))) |
| 46 | 45 | reseq2d 5966 | . . 3 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
| 47 | 40, 46 | eqtrid 2782 | . 2 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
| 48 | eupth2.o | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) | |
| 49 | 2fveq3 6881 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘𝑁))) | |
| 50 | fveq2 6876 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑃‘𝑘) = (𝑃‘𝑁)) | |
| 51 | fvoveq1 7428 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1))) | |
| 52 | 50, 51 | preq12d 4717 | . . . 4 ⊢ (𝑘 = 𝑁 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
| 53 | 49, 52 | eqeq12d 2751 | . . 3 ⊢ (𝑘 = 𝑁 → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))})) |
| 54 | eupth2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ UPGraph) | |
| 55 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 56 | 2 | upgrwlkedg 29622 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 57 | 54, 55, 56 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 58 | 53, 57, 11 | rspcdva 3602 | . 2 ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
| 59 | 1, 2, 3, 11, 12, 14, 22, 25, 31, 35, 37, 47, 48, 58 | eupth2lem3lem7 30215 | 1 ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 ∅c0 4308 ifcif 4500 {csn 4601 {cpr 4603 〈cop 4607 class class class wbr 5119 ↾ cres 5656 “ cima 5657 Fun wfun 6525 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 ≤ cle 11270 2c2 12295 ℕ0cn0 12501 ℤcz 12588 ...cfz 13524 ..^cfzo 13671 ♯chash 14348 ∥ cdvds 16272 Vtxcvtx 28975 iEdgciedg 28976 UPGraphcupgr 29059 VtxDegcvtxdg 29445 Walkscwlks 29576 Trailsctrls 29670 EulerPathsceupth 30178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-rp 13009 df-xadd 13129 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-word 14532 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-vtx 28977 df-iedg 28978 df-edg 29027 df-uhgr 29037 df-ushgr 29038 df-upgr 29061 df-uspgr 29129 df-vtxdg 29446 df-wlks 29579 df-trls 29672 df-eupth 30179 |
| This theorem is referenced by: eupth2lems 30219 |
| Copyright terms: Public domain | W3C validator |