![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eupth2lem3 | Structured version Visualization version GIF version |
Description: Lemma for eupth2 30271. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
Ref | Expression |
---|---|
eupth2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
eupth2.i | ⊢ 𝐼 = (iEdg‘𝐺) |
eupth2.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
eupth2.f | ⊢ (𝜑 → Fun 𝐼) |
eupth2.p | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
eupth2.h | ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉 |
eupth2.x | ⊢ 𝑋 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉 |
eupth2.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
eupth2.l | ⊢ (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹)) |
eupth2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
eupth2.o | ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) |
Ref | Expression |
---|---|
eupth2lem3 | ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupth2.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eupth2.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | eupth2.f | . 2 ⊢ (𝜑 → Fun 𝐼) | |
4 | eupth2.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | eupth2.p | . . . 4 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
6 | eupthiswlk 30244 | . . . 4 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
7 | wlkcl 29651 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → (♯‘𝐹) ∈ ℕ0) |
9 | eupth2.l | . . 3 ⊢ (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹)) | |
10 | nn0p1elfzo 13759 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0 ∧ (𝑁 + 1) ≤ (♯‘𝐹)) → 𝑁 ∈ (0..^(♯‘𝐹))) | |
11 | 4, 8, 9, 10 | syl3anc 1371 | . 2 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
12 | eupth2.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
13 | eupthistrl 30243 | . . 3 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
14 | 5, 13 | syl 17 | . 2 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
15 | eupth2.h | . . . . 5 ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉 | |
16 | 15 | fveq2i 6923 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) |
17 | 1 | fvexi 6934 | . . . . 5 ⊢ 𝑉 ∈ V |
18 | 2 | fvexi 6934 | . . . . . 6 ⊢ 𝐼 ∈ V |
19 | 18 | resex 6058 | . . . . 5 ⊢ (𝐼 ↾ (𝐹 “ (0..^𝑁))) ∈ V |
20 | 17, 19 | opvtxfvi 29044 | . . . 4 ⊢ (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) = 𝑉 |
21 | 16, 20 | eqtri 2768 | . . 3 ⊢ (Vtx‘𝐻) = 𝑉 |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
23 | snex 5451 | . . . 4 ⊢ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉} ∈ V | |
24 | 17, 23 | opvtxfvi 29044 | . . 3 ⊢ (Vtx‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = 𝑉 |
25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = 𝑉) |
26 | eupth2.x | . . . . 5 ⊢ 𝑋 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉 | |
27 | 26 | fveq2i 6923 | . . . 4 ⊢ (Vtx‘𝑋) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) |
28 | 18 | resex 6058 | . . . . 5 ⊢ (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) ∈ V |
29 | 17, 28 | opvtxfvi 29044 | . . . 4 ⊢ (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) = 𝑉 |
30 | 27, 29 | eqtri 2768 | . . 3 ⊢ (Vtx‘𝑋) = 𝑉 |
31 | 30 | a1i 11 | . 2 ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
32 | 15 | fveq2i 6923 | . . . 4 ⊢ (iEdg‘𝐻) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) |
33 | 17, 19 | opiedgfvi 29045 | . . . 4 ⊢ (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) = (𝐼 ↾ (𝐹 “ (0..^𝑁))) |
34 | 32, 33 | eqtri 2768 | . . 3 ⊢ (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁))) |
35 | 34 | a1i 11 | . 2 ⊢ (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
36 | 17, 23 | opiedgfvi 29045 | . . 3 ⊢ (iEdg‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉} |
37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
38 | 26 | fveq2i 6923 | . . . 4 ⊢ (iEdg‘𝑋) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) |
39 | 17, 28 | opiedgfvi 29045 | . . . 4 ⊢ (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) |
40 | 38, 39 | eqtri 2768 | . . 3 ⊢ (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) |
41 | 4 | nn0zd 12665 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
42 | fzval3 13785 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1))) | |
43 | 42 | eqcomd 2746 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁)) |
44 | 41, 43 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(𝑁 + 1)) = (0...𝑁)) |
45 | 44 | imaeq2d 6089 | . . . 4 ⊢ (𝜑 → (𝐹 “ (0..^(𝑁 + 1))) = (𝐹 “ (0...𝑁))) |
46 | 45 | reseq2d 6009 | . . 3 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
47 | 40, 46 | eqtrid 2792 | . 2 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
48 | eupth2.o | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) | |
49 | 2fveq3 6925 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘𝑁))) | |
50 | fveq2 6920 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑃‘𝑘) = (𝑃‘𝑁)) | |
51 | fvoveq1 7471 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1))) | |
52 | 50, 51 | preq12d 4766 | . . . 4 ⊢ (𝑘 = 𝑁 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
53 | 49, 52 | eqeq12d 2756 | . . 3 ⊢ (𝑘 = 𝑁 → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))})) |
54 | eupth2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ UPGraph) | |
55 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
56 | 2 | upgrwlkedg 29678 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
57 | 54, 55, 56 | syl2anc 583 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
58 | 53, 57, 11 | rspcdva 3636 | . 2 ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
59 | 1, 2, 3, 11, 12, 14, 22, 25, 31, 35, 37, 47, 48, 58 | eupth2lem3lem7 30266 | 1 ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ∅c0 4352 ifcif 4548 {csn 4648 {cpr 4650 〈cop 4654 class class class wbr 5166 ↾ cres 5702 “ cima 5703 Fun wfun 6567 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 ≤ cle 11325 2c2 12348 ℕ0cn0 12553 ℤcz 12639 ...cfz 13567 ..^cfzo 13711 ♯chash 14379 ∥ cdvds 16302 Vtxcvtx 29031 iEdgciedg 29032 UPGraphcupgr 29115 VtxDegcvtxdg 29501 Walkscwlks 29632 Trailsctrls 29726 EulerPathsceupth 30229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-rp 13058 df-xadd 13176 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-word 14563 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-vtx 29033 df-iedg 29034 df-edg 29083 df-uhgr 29093 df-ushgr 29094 df-upgr 29117 df-uspgr 29185 df-vtxdg 29502 df-wlks 29635 df-trls 29728 df-eupth 30230 |
This theorem is referenced by: eupth2lems 30270 |
Copyright terms: Public domain | W3C validator |