MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3 Structured version   Visualization version   GIF version

Theorem eupth2lem3 30217
Description: Lemma for eupth2 30220. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v 𝑉 = (Vtx‘𝐺)
eupth2.i 𝐼 = (iEdg‘𝐺)
eupth2.g (𝜑𝐺 ∈ UPGraph)
eupth2.f (𝜑 → Fun 𝐼)
eupth2.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupth2.h 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩
eupth2.x 𝑋 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩
eupth2.n (𝜑𝑁 ∈ ℕ0)
eupth2.l (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹))
eupth2.u (𝜑𝑈𝑉)
eupth2.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
Assertion
Ref Expression
eupth2lem3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑈   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem eupth2lem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eupth2.v . 2 𝑉 = (Vtx‘𝐺)
2 eupth2.i . 2 𝐼 = (iEdg‘𝐺)
3 eupth2.f . 2 (𝜑 → Fun 𝐼)
4 eupth2.n . . 3 (𝜑𝑁 ∈ ℕ0)
5 eupth2.p . . . 4 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
6 eupthiswlk 30193 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
7 wlkcl 29595 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
85, 6, 73syl 18 . . 3 (𝜑 → (♯‘𝐹) ∈ ℕ0)
9 eupth2.l . . 3 (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹))
10 nn0p1elfzo 13719 . . 3 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0 ∧ (𝑁 + 1) ≤ (♯‘𝐹)) → 𝑁 ∈ (0..^(♯‘𝐹)))
114, 8, 9, 10syl3anc 1373 . 2 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
12 eupth2.u . 2 (𝜑𝑈𝑉)
13 eupthistrl 30192 . . 3 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
145, 13syl 17 . 2 (𝜑𝐹(Trails‘𝐺)𝑃)
15 eupth2.h . . . . 5 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩
1615fveq2i 6879 . . . 4 (Vtx‘𝐻) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩)
171fvexi 6890 . . . . 5 𝑉 ∈ V
182fvexi 6890 . . . . . 6 𝐼 ∈ V
1918resex 6016 . . . . 5 (𝐼 ↾ (𝐹 “ (0..^𝑁))) ∈ V
2017, 19opvtxfvi 28988 . . . 4 (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩) = 𝑉
2116, 20eqtri 2758 . . 3 (Vtx‘𝐻) = 𝑉
2221a1i 11 . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
23 snex 5406 . . . 4 {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} ∈ V
2417, 23opvtxfvi 28988 . . 3 (Vtx‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = 𝑉
2524a1i 11 . 2 (𝜑 → (Vtx‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = 𝑉)
26 eupth2.x . . . . 5 𝑋 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩
2726fveq2i 6879 . . . 4 (Vtx‘𝑋) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩)
2818resex 6016 . . . . 5 (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) ∈ V
2917, 28opvtxfvi 28988 . . . 4 (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩) = 𝑉
3027, 29eqtri 2758 . . 3 (Vtx‘𝑋) = 𝑉
3130a1i 11 . 2 (𝜑 → (Vtx‘𝑋) = 𝑉)
3215fveq2i 6879 . . . 4 (iEdg‘𝐻) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩)
3317, 19opiedgfvi 28989 . . . 4 (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))
3432, 33eqtri 2758 . . 3 (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))
3534a1i 11 . 2 (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
3617, 23opiedgfvi 28989 . . 3 (iEdg‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}
3736a1i 11 . 2 (𝜑 → (iEdg‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
3826fveq2i 6879 . . . 4 (iEdg‘𝑋) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩)
3917, 28opiedgfvi 28989 . . . 4 (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))
4038, 39eqtri 2758 . . 3 (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))
414nn0zd 12614 . . . . . 6 (𝜑𝑁 ∈ ℤ)
42 fzval3 13750 . . . . . . 7 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
4342eqcomd 2741 . . . . . 6 (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁))
4441, 43syl 17 . . . . 5 (𝜑 → (0..^(𝑁 + 1)) = (0...𝑁))
4544imaeq2d 6047 . . . 4 (𝜑 → (𝐹 “ (0..^(𝑁 + 1))) = (𝐹 “ (0...𝑁)))
4645reseq2d 5966 . . 3 (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
4740, 46eqtrid 2782 . 2 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
48 eupth2.o . 2 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
49 2fveq3 6881 . . . 4 (𝑘 = 𝑁 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹𝑁)))
50 fveq2 6876 . . . . 5 (𝑘 = 𝑁 → (𝑃𝑘) = (𝑃𝑁))
51 fvoveq1 7428 . . . . 5 (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1)))
5250, 51preq12d 4717 . . . 4 (𝑘 = 𝑁 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
5349, 52eqeq12d 2751 . . 3 (𝑘 = 𝑁 → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))}))
54 eupth2.g . . . 4 (𝜑𝐺 ∈ UPGraph)
555, 6syl 17 . . . 4 (𝜑𝐹(Walks‘𝐺)𝑃)
562upgrwlkedg 29622 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
5754, 55, 56syl2anc 584 . . 3 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
5853, 57, 11rspcdva 3602 . 2 (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
591, 2, 3, 11, 12, 14, 22, 25, 31, 35, 37, 47, 48, 58eupth2lem3lem7 30215 1 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2108  wral 3051  {crab 3415  c0 4308  ifcif 4500  {csn 4601  {cpr 4603  cop 4607   class class class wbr 5119  cres 5656  cima 5657  Fun wfun 6525  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132  cle 11270  2c2 12295  0cn0 12501  cz 12588  ...cfz 13524  ..^cfzo 13671  chash 14348  cdvds 16272  Vtxcvtx 28975  iEdgciedg 28976  UPGraphcupgr 29059  VtxDegcvtxdg 29445  Walkscwlks 29576  Trailsctrls 29670  EulerPathsceupth 30178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-xadd 13129  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-word 14532  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-vtx 28977  df-iedg 28978  df-edg 29027  df-uhgr 29037  df-ushgr 29038  df-upgr 29061  df-uspgr 29129  df-vtxdg 29446  df-wlks 29579  df-trls 29672  df-eupth 30179
This theorem is referenced by:  eupth2lems  30219
  Copyright terms: Public domain W3C validator