MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3 Structured version   Visualization version   GIF version

Theorem eupth2lem3 30268
Description: Lemma for eupth2 30271. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v 𝑉 = (Vtx‘𝐺)
eupth2.i 𝐼 = (iEdg‘𝐺)
eupth2.g (𝜑𝐺 ∈ UPGraph)
eupth2.f (𝜑 → Fun 𝐼)
eupth2.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupth2.h 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩
eupth2.x 𝑋 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩
eupth2.n (𝜑𝑁 ∈ ℕ0)
eupth2.l (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹))
eupth2.u (𝜑𝑈𝑉)
eupth2.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
Assertion
Ref Expression
eupth2lem3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑈   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem eupth2lem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eupth2.v . 2 𝑉 = (Vtx‘𝐺)
2 eupth2.i . 2 𝐼 = (iEdg‘𝐺)
3 eupth2.f . 2 (𝜑 → Fun 𝐼)
4 eupth2.n . . 3 (𝜑𝑁 ∈ ℕ0)
5 eupth2.p . . . 4 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
6 eupthiswlk 30244 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
7 wlkcl 29651 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
85, 6, 73syl 18 . . 3 (𝜑 → (♯‘𝐹) ∈ ℕ0)
9 eupth2.l . . 3 (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹))
10 nn0p1elfzo 13759 . . 3 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0 ∧ (𝑁 + 1) ≤ (♯‘𝐹)) → 𝑁 ∈ (0..^(♯‘𝐹)))
114, 8, 9, 10syl3anc 1371 . 2 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
12 eupth2.u . 2 (𝜑𝑈𝑉)
13 eupthistrl 30243 . . 3 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
145, 13syl 17 . 2 (𝜑𝐹(Trails‘𝐺)𝑃)
15 eupth2.h . . . . 5 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩
1615fveq2i 6923 . . . 4 (Vtx‘𝐻) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩)
171fvexi 6934 . . . . 5 𝑉 ∈ V
182fvexi 6934 . . . . . 6 𝐼 ∈ V
1918resex 6058 . . . . 5 (𝐼 ↾ (𝐹 “ (0..^𝑁))) ∈ V
2017, 19opvtxfvi 29044 . . . 4 (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩) = 𝑉
2116, 20eqtri 2768 . . 3 (Vtx‘𝐻) = 𝑉
2221a1i 11 . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
23 snex 5451 . . . 4 {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} ∈ V
2417, 23opvtxfvi 29044 . . 3 (Vtx‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = 𝑉
2524a1i 11 . 2 (𝜑 → (Vtx‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = 𝑉)
26 eupth2.x . . . . 5 𝑋 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩
2726fveq2i 6923 . . . 4 (Vtx‘𝑋) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩)
2818resex 6058 . . . . 5 (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) ∈ V
2917, 28opvtxfvi 29044 . . . 4 (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩) = 𝑉
3027, 29eqtri 2768 . . 3 (Vtx‘𝑋) = 𝑉
3130a1i 11 . 2 (𝜑 → (Vtx‘𝑋) = 𝑉)
3215fveq2i 6923 . . . 4 (iEdg‘𝐻) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩)
3317, 19opiedgfvi 29045 . . . 4 (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))
3432, 33eqtri 2768 . . 3 (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))
3534a1i 11 . 2 (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
3617, 23opiedgfvi 29045 . . 3 (iEdg‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}
3736a1i 11 . 2 (𝜑 → (iEdg‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
3826fveq2i 6923 . . . 4 (iEdg‘𝑋) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩)
3917, 28opiedgfvi 29045 . . . 4 (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))
4038, 39eqtri 2768 . . 3 (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))
414nn0zd 12665 . . . . . 6 (𝜑𝑁 ∈ ℤ)
42 fzval3 13785 . . . . . . 7 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
4342eqcomd 2746 . . . . . 6 (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁))
4441, 43syl 17 . . . . 5 (𝜑 → (0..^(𝑁 + 1)) = (0...𝑁))
4544imaeq2d 6089 . . . 4 (𝜑 → (𝐹 “ (0..^(𝑁 + 1))) = (𝐹 “ (0...𝑁)))
4645reseq2d 6009 . . 3 (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
4740, 46eqtrid 2792 . 2 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
48 eupth2.o . 2 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
49 2fveq3 6925 . . . 4 (𝑘 = 𝑁 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹𝑁)))
50 fveq2 6920 . . . . 5 (𝑘 = 𝑁 → (𝑃𝑘) = (𝑃𝑁))
51 fvoveq1 7471 . . . . 5 (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1)))
5250, 51preq12d 4766 . . . 4 (𝑘 = 𝑁 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
5349, 52eqeq12d 2756 . . 3 (𝑘 = 𝑁 → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))}))
54 eupth2.g . . . 4 (𝜑𝐺 ∈ UPGraph)
555, 6syl 17 . . . 4 (𝜑𝐹(Walks‘𝐺)𝑃)
562upgrwlkedg 29678 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
5754, 55, 56syl2anc 583 . . 3 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
5853, 57, 11rspcdva 3636 . 2 (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
591, 2, 3, 11, 12, 14, 22, 25, 31, 35, 37, 47, 48, 58eupth2lem3lem7 30266 1 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2108  wral 3067  {crab 3443  c0 4352  ifcif 4548  {csn 4648  {cpr 4650  cop 4654   class class class wbr 5166  cres 5702  cima 5703  Fun wfun 6567  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  cle 11325  2c2 12348  0cn0 12553  cz 12639  ...cfz 13567  ..^cfzo 13711  chash 14379  cdvds 16302  Vtxcvtx 29031  iEdgciedg 29032  UPGraphcupgr 29115  VtxDegcvtxdg 29501  Walkscwlks 29632  Trailsctrls 29726  EulerPathsceupth 30229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-xadd 13176  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-vtx 29033  df-iedg 29034  df-edg 29083  df-uhgr 29093  df-ushgr 29094  df-upgr 29117  df-uspgr 29185  df-vtxdg 29502  df-wlks 29635  df-trls 29728  df-eupth 30230
This theorem is referenced by:  eupth2lems  30270
  Copyright terms: Public domain W3C validator