| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupth2lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for eupth2 30219. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| Ref | Expression |
|---|---|
| eupth2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| eupth2.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| eupth2.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| eupth2.f | ⊢ (𝜑 → Fun 𝐼) |
| eupth2.p | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
| eupth2.h | ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉 |
| eupth2.x | ⊢ 𝑋 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉 |
| eupth2.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| eupth2.l | ⊢ (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹)) |
| eupth2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| eupth2.o | ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) |
| Ref | Expression |
|---|---|
| eupth2lem3 | ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupth2.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eupth2.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | eupth2.f | . 2 ⊢ (𝜑 → Fun 𝐼) | |
| 4 | eupth2.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 5 | eupth2.p | . . . 4 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
| 6 | eupthiswlk 30192 | . . . 4 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 7 | wlkcl 29594 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → (♯‘𝐹) ∈ ℕ0) |
| 9 | eupth2.l | . . 3 ⊢ (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹)) | |
| 10 | nn0p1elfzo 13602 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0 ∧ (𝑁 + 1) ≤ (♯‘𝐹)) → 𝑁 ∈ (0..^(♯‘𝐹))) | |
| 11 | 4, 8, 9, 10 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| 12 | eupth2.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 13 | eupthistrl 30191 | . . 3 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
| 14 | 5, 13 | syl 17 | . 2 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| 15 | eupth2.h | . . . . 5 ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉 | |
| 16 | 15 | fveq2i 6825 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) |
| 17 | 1 | fvexi 6836 | . . . . 5 ⊢ 𝑉 ∈ V |
| 18 | 2 | fvexi 6836 | . . . . . 6 ⊢ 𝐼 ∈ V |
| 19 | 18 | resex 5977 | . . . . 5 ⊢ (𝐼 ↾ (𝐹 “ (0..^𝑁))) ∈ V |
| 20 | 17, 19 | opvtxfvi 28987 | . . . 4 ⊢ (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) = 𝑉 |
| 21 | 16, 20 | eqtri 2754 | . . 3 ⊢ (Vtx‘𝐻) = 𝑉 |
| 22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| 23 | snex 5372 | . . . 4 ⊢ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉} ∈ V | |
| 24 | 17, 23 | opvtxfvi 28987 | . . 3 ⊢ (Vtx‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = 𝑉 |
| 25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = 𝑉) |
| 26 | eupth2.x | . . . . 5 ⊢ 𝑋 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉 | |
| 27 | 26 | fveq2i 6825 | . . . 4 ⊢ (Vtx‘𝑋) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) |
| 28 | 18 | resex 5977 | . . . . 5 ⊢ (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) ∈ V |
| 29 | 17, 28 | opvtxfvi 28987 | . . . 4 ⊢ (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) = 𝑉 |
| 30 | 27, 29 | eqtri 2754 | . . 3 ⊢ (Vtx‘𝑋) = 𝑉 |
| 31 | 30 | a1i 11 | . 2 ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
| 32 | 15 | fveq2i 6825 | . . . 4 ⊢ (iEdg‘𝐻) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) |
| 33 | 17, 19 | opiedgfvi 28988 | . . . 4 ⊢ (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) = (𝐼 ↾ (𝐹 “ (0..^𝑁))) |
| 34 | 32, 33 | eqtri 2754 | . . 3 ⊢ (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁))) |
| 35 | 34 | a1i 11 | . 2 ⊢ (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 36 | 17, 23 | opiedgfvi 28988 | . . 3 ⊢ (iEdg‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉} |
| 37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
| 38 | 26 | fveq2i 6825 | . . . 4 ⊢ (iEdg‘𝑋) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) |
| 39 | 17, 28 | opiedgfvi 28988 | . . . 4 ⊢ (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) |
| 40 | 38, 39 | eqtri 2754 | . . 3 ⊢ (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) |
| 41 | 4 | nn0zd 12494 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 42 | fzval3 13634 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1))) | |
| 43 | 42 | eqcomd 2737 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁)) |
| 44 | 41, 43 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(𝑁 + 1)) = (0...𝑁)) |
| 45 | 44 | imaeq2d 6008 | . . . 4 ⊢ (𝜑 → (𝐹 “ (0..^(𝑁 + 1))) = (𝐹 “ (0...𝑁))) |
| 46 | 45 | reseq2d 5927 | . . 3 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
| 47 | 40, 46 | eqtrid 2778 | . 2 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
| 48 | eupth2.o | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) | |
| 49 | 2fveq3 6827 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘𝑁))) | |
| 50 | fveq2 6822 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑃‘𝑘) = (𝑃‘𝑁)) | |
| 51 | fvoveq1 7369 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1))) | |
| 52 | 50, 51 | preq12d 4691 | . . . 4 ⊢ (𝑘 = 𝑁 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
| 53 | 49, 52 | eqeq12d 2747 | . . 3 ⊢ (𝑘 = 𝑁 → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))})) |
| 54 | eupth2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ UPGraph) | |
| 55 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 56 | 2 | upgrwlkedg 29620 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 57 | 54, 55, 56 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 58 | 53, 57, 11 | rspcdva 3573 | . 2 ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
| 59 | 1, 2, 3, 11, 12, 14, 22, 25, 31, 35, 37, 47, 48, 58 | eupth2lem3lem7 30214 | 1 ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ∅c0 4280 ifcif 4472 {csn 4573 {cpr 4575 〈cop 4579 class class class wbr 5089 ↾ cres 5616 “ cima 5617 Fun wfun 6475 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 ≤ cle 11147 2c2 12180 ℕ0cn0 12381 ℤcz 12468 ...cfz 13407 ..^cfzo 13554 ♯chash 14237 ∥ cdvds 16163 Vtxcvtx 28974 iEdgciedg 28975 UPGraphcupgr 29058 VtxDegcvtxdg 29444 Walkscwlks 29575 Trailsctrls 29667 EulerPathsceupth 30177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-rp 12891 df-xadd 13012 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-vtx 28976 df-iedg 28977 df-edg 29026 df-uhgr 29036 df-ushgr 29037 df-upgr 29060 df-uspgr 29128 df-vtxdg 29445 df-wlks 29578 df-trls 29669 df-eupth 30178 |
| This theorem is referenced by: eupth2lems 30218 |
| Copyright terms: Public domain | W3C validator |