MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2f1o Structured version   Visualization version   GIF version

Theorem s2f1o 14629
Description: A length 2 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
s2f1o ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}))

Proof of Theorem s2f1o
StepHypRef Expression
1 simpl1 1190 . . . . . 6 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐴𝑆)
2 0z 12330 . . . . . 6 0 ∈ ℤ
31, 2jctil 520 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (0 ∈ ℤ ∧ 𝐴𝑆))
4 simpl2 1191 . . . . . 6 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐵𝑆)
5 1z 12350 . . . . . 6 1 ∈ ℤ
64, 5jctil 520 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (1 ∈ ℤ ∧ 𝐵𝑆))
73, 6jca 512 . . . 4 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → ((0 ∈ ℤ ∧ 𝐴𝑆) ∧ (1 ∈ ℤ ∧ 𝐵𝑆)))
8 simpl3 1192 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐴𝐵)
9 0ne1 12044 . . . . 5 0 ≠ 1
108, 9jctil 520 . . . 4 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (0 ≠ 1 ∧ 𝐴𝐵))
11 f1oprg 6761 . . . 4 (((0 ∈ ℤ ∧ 𝐴𝑆) ∧ (1 ∈ ℤ ∧ 𝐵𝑆)) → ((0 ≠ 1 ∧ 𝐴𝐵) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵}))
127, 10, 11sylc 65 . . 3 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵})
13 eqcom 2745 . . . . . 6 (𝐸 = ⟨“𝐴𝐵”⟩ ↔ ⟨“𝐴𝐵”⟩ = 𝐸)
14 s2prop 14620 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
15143adant3 1131 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
1615eqeq1d 2740 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (⟨“𝐴𝐵”⟩ = 𝐸 ↔ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸))
1713, 16bitrid 282 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ ↔ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸))
1817biimpa 477 . . . 4 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸)
1918f1oeq1d 6711 . . 3 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵} ↔ 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}))
2012, 19mpbid 231 . 2 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})
2120ex 413 1 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {cpr 4563  cop 4567  1-1-ontowf1o 6432  0cc0 10871  1c1 10872  cz 12319  ⟨“cs2 14554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator