![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s2f1o | Structured version Visualization version GIF version |
Description: A length 2 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
Ref | Expression |
---|---|
s2f1o | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐴 ∈ 𝑆) | |
2 | 0z 12575 | . . . . . 6 ⊢ 0 ∈ ℤ | |
3 | 1, 2 | jctil 518 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (0 ∈ ℤ ∧ 𝐴 ∈ 𝑆)) |
4 | simpl2 1190 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐵 ∈ 𝑆) | |
5 | 1z 12598 | . . . . . 6 ⊢ 1 ∈ ℤ | |
6 | 4, 5 | jctil 518 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆)) |
7 | 3, 6 | jca 510 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → ((0 ∈ ℤ ∧ 𝐴 ∈ 𝑆) ∧ (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆))) |
8 | simpl3 1191 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐴 ≠ 𝐵) | |
9 | 0ne1 12289 | . . . . 5 ⊢ 0 ≠ 1 | |
10 | 8, 9 | jctil 518 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (0 ≠ 1 ∧ 𝐴 ≠ 𝐵)) |
11 | f1oprg 6879 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 𝐴 ∈ 𝑆) ∧ (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆)) → ((0 ≠ 1 ∧ 𝐴 ≠ 𝐵) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵})) | |
12 | 7, 10, 11 | sylc 65 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵}) |
13 | eqcom 2737 | . . . . . 6 ⊢ (𝐸 = ⟨“𝐴𝐵”⟩ ↔ ⟨“𝐴𝐵”⟩ = 𝐸) | |
14 | s2prop 14864 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) | |
15 | 14 | 3adant3 1130 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) |
16 | 15 | eqeq1d 2732 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (⟨“𝐴𝐵”⟩ = 𝐸 ↔ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸)) |
17 | 13, 16 | bitrid 282 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ ↔ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸)) |
18 | 17 | biimpa 475 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸) |
19 | 18 | f1oeq1d 6829 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵} ↔ 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
20 | 12, 19 | mpbid 231 | . 2 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}) |
21 | 20 | ex 411 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 {cpr 4631 ⟨cop 4635 –1-1-onto→wf1o 6543 0cc0 11114 1c1 11115 ℤcz 12564 ⟨“cs2 14798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-n0 12479 df-z 12565 df-uz 12829 df-fz 13491 df-fzo 13634 df-hash 14297 df-word 14471 df-concat 14527 df-s1 14552 df-s2 14805 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |