![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s2f1o | Structured version Visualization version GIF version |
Description: A length 2 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
Ref | Expression |
---|---|
s2f1o | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = 〈“𝐴𝐵”〉 → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐴 ∈ 𝑆) | |
2 | 0z 12431 | . . . . . 6 ⊢ 0 ∈ ℤ | |
3 | 1, 2 | jctil 520 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → (0 ∈ ℤ ∧ 𝐴 ∈ 𝑆)) |
4 | simpl2 1191 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐵 ∈ 𝑆) | |
5 | 1z 12451 | . . . . . 6 ⊢ 1 ∈ ℤ | |
6 | 4, 5 | jctil 520 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆)) |
7 | 3, 6 | jca 512 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → ((0 ∈ ℤ ∧ 𝐴 ∈ 𝑆) ∧ (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆))) |
8 | simpl3 1192 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐴 ≠ 𝐵) | |
9 | 0ne1 12145 | . . . . 5 ⊢ 0 ≠ 1 | |
10 | 8, 9 | jctil 520 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → (0 ≠ 1 ∧ 𝐴 ≠ 𝐵)) |
11 | f1oprg 6812 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 𝐴 ∈ 𝑆) ∧ (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆)) → ((0 ≠ 1 ∧ 𝐴 ≠ 𝐵) → {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}–1-1-onto→{𝐴, 𝐵})) | |
12 | 7, 10, 11 | sylc 65 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}–1-1-onto→{𝐴, 𝐵}) |
13 | eqcom 2743 | . . . . . 6 ⊢ (𝐸 = 〈“𝐴𝐵”〉 ↔ 〈“𝐴𝐵”〉 = 𝐸) | |
14 | s2prop 14719 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) | |
15 | 14 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
16 | 15 | eqeq1d 2738 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (〈“𝐴𝐵”〉 = 𝐸 ↔ {〈0, 𝐴〉, 〈1, 𝐵〉} = 𝐸)) |
17 | 13, 16 | bitrid 282 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = 〈“𝐴𝐵”〉 ↔ {〈0, 𝐴〉, 〈1, 𝐵〉} = 𝐸)) |
18 | 17 | biimpa 477 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → {〈0, 𝐴〉, 〈1, 𝐵〉} = 𝐸) |
19 | 18 | f1oeq1d 6762 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → ({〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}–1-1-onto→{𝐴, 𝐵} ↔ 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
20 | 12, 19 | mpbid 231 | . 2 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}) |
21 | 20 | ex 413 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = 〈“𝐴𝐵”〉 → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 {cpr 4575 〈cop 4579 –1-1-onto→wf1o 6478 0cc0 10972 1c1 10973 ℤcz 12420 〈“cs2 14653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-fzo 13484 df-hash 14146 df-word 14318 df-concat 14374 df-s1 14400 df-s2 14660 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |