MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2f1o Structured version   Visualization version   GIF version

Theorem s2f1o 14269
Description: A length 2 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
s2f1o ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}))

Proof of Theorem s2f1o
StepHypRef Expression
1 simpl1 1188 . . . . . 6 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐴𝑆)
2 0z 11980 . . . . . 6 0 ∈ ℤ
31, 2jctil 523 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (0 ∈ ℤ ∧ 𝐴𝑆))
4 simpl2 1189 . . . . . 6 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐵𝑆)
5 1z 12000 . . . . . 6 1 ∈ ℤ
64, 5jctil 523 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (1 ∈ ℤ ∧ 𝐵𝑆))
73, 6jca 515 . . . 4 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → ((0 ∈ ℤ ∧ 𝐴𝑆) ∧ (1 ∈ ℤ ∧ 𝐵𝑆)))
8 simpl3 1190 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐴𝐵)
9 0ne1 11696 . . . . 5 0 ≠ 1
108, 9jctil 523 . . . 4 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (0 ≠ 1 ∧ 𝐴𝐵))
11 f1oprg 6641 . . . 4 (((0 ∈ ℤ ∧ 𝐴𝑆) ∧ (1 ∈ ℤ ∧ 𝐵𝑆)) → ((0 ≠ 1 ∧ 𝐴𝐵) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵}))
127, 10, 11sylc 65 . . 3 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵})
13 eqcom 2829 . . . . . 6 (𝐸 = ⟨“𝐴𝐵”⟩ ↔ ⟨“𝐴𝐵”⟩ = 𝐸)
14 s2prop 14260 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
15143adant3 1129 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
1615eqeq1d 2824 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (⟨“𝐴𝐵”⟩ = 𝐸 ↔ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸))
1713, 16syl5bb 286 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ ↔ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸))
1817biimpa 480 . . . 4 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸)
19 eqidd 2823 . . . 4 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → {0, 1} = {0, 1})
20 eqidd 2823 . . . 4 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → {𝐴, 𝐵} = {𝐴, 𝐵})
2118, 19, 20f1oeq123d 6592 . . 3 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵} ↔ 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}))
2212, 21mpbid 235 . 2 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})
2322ex 416 1 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011  {cpr 4541  cop 4545  1-1-ontowf1o 6333  0cc0 10526  1c1 10527  cz 11969  ⟨“cs2 14194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator