| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s2f1o | Structured version Visualization version GIF version | ||
| Description: A length 2 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
| Ref | Expression |
|---|---|
| s2f1o | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = 〈“𝐴𝐵”〉 → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐴 ∈ 𝑆) | |
| 2 | 0z 12488 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 3 | 1, 2 | jctil 519 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → (0 ∈ ℤ ∧ 𝐴 ∈ 𝑆)) |
| 4 | simpl2 1193 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐵 ∈ 𝑆) | |
| 5 | 1z 12510 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 6 | 4, 5 | jctil 519 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆)) |
| 7 | 3, 6 | jca 511 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → ((0 ∈ ℤ ∧ 𝐴 ∈ 𝑆) ∧ (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆))) |
| 8 | simpl3 1194 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐴 ≠ 𝐵) | |
| 9 | 0ne1 12205 | . . . . 5 ⊢ 0 ≠ 1 | |
| 10 | 8, 9 | jctil 519 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → (0 ≠ 1 ∧ 𝐴 ≠ 𝐵)) |
| 11 | f1oprg 6816 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 𝐴 ∈ 𝑆) ∧ (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆)) → ((0 ≠ 1 ∧ 𝐴 ≠ 𝐵) → {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}–1-1-onto→{𝐴, 𝐵})) | |
| 12 | 7, 10, 11 | sylc 65 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}–1-1-onto→{𝐴, 𝐵}) |
| 13 | eqcom 2740 | . . . . . 6 ⊢ (𝐸 = 〈“𝐴𝐵”〉 ↔ 〈“𝐴𝐵”〉 = 𝐸) | |
| 14 | s2prop 14818 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) | |
| 15 | 14 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
| 16 | 15 | eqeq1d 2735 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (〈“𝐴𝐵”〉 = 𝐸 ↔ {〈0, 𝐴〉, 〈1, 𝐵〉} = 𝐸)) |
| 17 | 13, 16 | bitrid 283 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = 〈“𝐴𝐵”〉 ↔ {〈0, 𝐴〉, 〈1, 𝐵〉} = 𝐸)) |
| 18 | 17 | biimpa 476 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → {〈0, 𝐴〉, 〈1, 𝐵〉} = 𝐸) |
| 19 | 18 | f1oeq1d 6765 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → ({〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}–1-1-onto→{𝐴, 𝐵} ↔ 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
| 20 | 12, 19 | mpbid 232 | . 2 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}) |
| 21 | 20 | ex 412 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = 〈“𝐴𝐵”〉 → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {cpr 4579 〈cop 4583 –1-1-onto→wf1o 6487 0cc0 11015 1c1 11016 ℤcz 12477 〈“cs2 14752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 df-concat 14482 df-s1 14508 df-s2 14759 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |