MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2f1o Structured version   Visualization version   GIF version

Theorem s2f1o 14937
Description: A length 2 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
s2f1o ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}))

Proof of Theorem s2f1o
StepHypRef Expression
1 simpl1 1191 . . . . . 6 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐴𝑆)
2 0z 12607 . . . . . 6 0 ∈ ℤ
31, 2jctil 519 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (0 ∈ ℤ ∧ 𝐴𝑆))
4 simpl2 1192 . . . . . 6 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐵𝑆)
5 1z 12630 . . . . . 6 1 ∈ ℤ
64, 5jctil 519 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (1 ∈ ℤ ∧ 𝐵𝑆))
73, 6jca 511 . . . 4 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → ((0 ∈ ℤ ∧ 𝐴𝑆) ∧ (1 ∈ ℤ ∧ 𝐵𝑆)))
8 simpl3 1193 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐴𝐵)
9 0ne1 12319 . . . . 5 0 ≠ 1
108, 9jctil 519 . . . 4 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (0 ≠ 1 ∧ 𝐴𝐵))
11 f1oprg 6873 . . . 4 (((0 ∈ ℤ ∧ 𝐴𝑆) ∧ (1 ∈ ℤ ∧ 𝐵𝑆)) → ((0 ≠ 1 ∧ 𝐴𝐵) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵}))
127, 10, 11sylc 65 . . 3 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵})
13 eqcom 2741 . . . . . 6 (𝐸 = ⟨“𝐴𝐵”⟩ ↔ ⟨“𝐴𝐵”⟩ = 𝐸)
14 s2prop 14928 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
15143adant3 1132 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
1615eqeq1d 2736 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (⟨“𝐴𝐵”⟩ = 𝐸 ↔ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸))
1713, 16bitrid 283 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ ↔ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸))
1817biimpa 476 . . . 4 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸)
1918f1oeq1d 6823 . . 3 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵} ↔ 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}))
2012, 19mpbid 232 . 2 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})
2120ex 412 1 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  {cpr 4608  cop 4612  1-1-ontowf1o 6540  0cc0 11137  1c1 11138  cz 12596  ⟨“cs2 14862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-fzo 13677  df-hash 14352  df-word 14535  df-concat 14591  df-s1 14616  df-s2 14869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator