| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s2f1o | Structured version Visualization version GIF version | ||
| Description: A length 2 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
| Ref | Expression |
|---|---|
| s2f1o | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = 〈“𝐴𝐵”〉 → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1191 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐴 ∈ 𝑆) | |
| 2 | 0z 12607 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 3 | 1, 2 | jctil 519 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → (0 ∈ ℤ ∧ 𝐴 ∈ 𝑆)) |
| 4 | simpl2 1192 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐵 ∈ 𝑆) | |
| 5 | 1z 12630 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 6 | 4, 5 | jctil 519 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆)) |
| 7 | 3, 6 | jca 511 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → ((0 ∈ ℤ ∧ 𝐴 ∈ 𝑆) ∧ (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆))) |
| 8 | simpl3 1193 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐴 ≠ 𝐵) | |
| 9 | 0ne1 12319 | . . . . 5 ⊢ 0 ≠ 1 | |
| 10 | 8, 9 | jctil 519 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → (0 ≠ 1 ∧ 𝐴 ≠ 𝐵)) |
| 11 | f1oprg 6873 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 𝐴 ∈ 𝑆) ∧ (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆)) → ((0 ≠ 1 ∧ 𝐴 ≠ 𝐵) → {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}–1-1-onto→{𝐴, 𝐵})) | |
| 12 | 7, 10, 11 | sylc 65 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}–1-1-onto→{𝐴, 𝐵}) |
| 13 | eqcom 2741 | . . . . . 6 ⊢ (𝐸 = 〈“𝐴𝐵”〉 ↔ 〈“𝐴𝐵”〉 = 𝐸) | |
| 14 | s2prop 14928 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) | |
| 15 | 14 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
| 16 | 15 | eqeq1d 2736 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (〈“𝐴𝐵”〉 = 𝐸 ↔ {〈0, 𝐴〉, 〈1, 𝐵〉} = 𝐸)) |
| 17 | 13, 16 | bitrid 283 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = 〈“𝐴𝐵”〉 ↔ {〈0, 𝐴〉, 〈1, 𝐵〉} = 𝐸)) |
| 18 | 17 | biimpa 476 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → {〈0, 𝐴〉, 〈1, 𝐵〉} = 𝐸) |
| 19 | 18 | f1oeq1d 6823 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → ({〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}–1-1-onto→{𝐴, 𝐵} ↔ 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
| 20 | 12, 19 | mpbid 232 | . 2 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}) |
| 21 | 20 | ex 412 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = 〈“𝐴𝐵”〉 → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 {cpr 4608 〈cop 4612 –1-1-onto→wf1o 6540 0cc0 11137 1c1 11138 ℤcz 12596 〈“cs2 14862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-hash 14352 df-word 14535 df-concat 14591 df-s1 14616 df-s2 14869 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |