Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s2f1o | Structured version Visualization version GIF version |
Description: A length 2 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
Ref | Expression |
---|---|
s2f1o | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = 〈“𝐴𝐵”〉 → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐴 ∈ 𝑆) | |
2 | 0z 12330 | . . . . . 6 ⊢ 0 ∈ ℤ | |
3 | 1, 2 | jctil 520 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → (0 ∈ ℤ ∧ 𝐴 ∈ 𝑆)) |
4 | simpl2 1191 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐵 ∈ 𝑆) | |
5 | 1z 12350 | . . . . . 6 ⊢ 1 ∈ ℤ | |
6 | 4, 5 | jctil 520 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆)) |
7 | 3, 6 | jca 512 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → ((0 ∈ ℤ ∧ 𝐴 ∈ 𝑆) ∧ (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆))) |
8 | simpl3 1192 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐴 ≠ 𝐵) | |
9 | 0ne1 12044 | . . . . 5 ⊢ 0 ≠ 1 | |
10 | 8, 9 | jctil 520 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → (0 ≠ 1 ∧ 𝐴 ≠ 𝐵)) |
11 | f1oprg 6761 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 𝐴 ∈ 𝑆) ∧ (1 ∈ ℤ ∧ 𝐵 ∈ 𝑆)) → ((0 ≠ 1 ∧ 𝐴 ≠ 𝐵) → {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}–1-1-onto→{𝐴, 𝐵})) | |
12 | 7, 10, 11 | sylc 65 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → {〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}–1-1-onto→{𝐴, 𝐵}) |
13 | eqcom 2745 | . . . . . 6 ⊢ (𝐸 = 〈“𝐴𝐵”〉 ↔ 〈“𝐴𝐵”〉 = 𝐸) | |
14 | s2prop 14620 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) | |
15 | 14 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
16 | 15 | eqeq1d 2740 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (〈“𝐴𝐵”〉 = 𝐸 ↔ {〈0, 𝐴〉, 〈1, 𝐵〉} = 𝐸)) |
17 | 13, 16 | bitrid 282 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = 〈“𝐴𝐵”〉 ↔ {〈0, 𝐴〉, 〈1, 𝐵〉} = 𝐸)) |
18 | 17 | biimpa 477 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → {〈0, 𝐴〉, 〈1, 𝐵〉} = 𝐸) |
19 | 18 | f1oeq1d 6711 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → ({〈0, 𝐴〉, 〈1, 𝐵〉}:{0, 1}–1-1-onto→{𝐴, 𝐵} ↔ 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
20 | 12, 19 | mpbid 231 | . 2 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝐸 = 〈“𝐴𝐵”〉) → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}) |
21 | 20 | ex 413 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = 〈“𝐴𝐵”〉 → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {cpr 4563 〈cop 4567 –1-1-onto→wf1o 6432 0cc0 10871 1c1 10872 ℤcz 12319 〈“cs2 14554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-s2 14561 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |