MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2f1o Structured version   Visualization version   GIF version

Theorem s2f1o 14967
Description: A length 2 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
s2f1o ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}))

Proof of Theorem s2f1o
StepHypRef Expression
1 simpl1 1191 . . . . . 6 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐴𝑆)
2 0z 12652 . . . . . 6 0 ∈ ℤ
31, 2jctil 519 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (0 ∈ ℤ ∧ 𝐴𝑆))
4 simpl2 1192 . . . . . 6 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐵𝑆)
5 1z 12675 . . . . . 6 1 ∈ ℤ
64, 5jctil 519 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (1 ∈ ℤ ∧ 𝐵𝑆))
73, 6jca 511 . . . 4 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → ((0 ∈ ℤ ∧ 𝐴𝑆) ∧ (1 ∈ ℤ ∧ 𝐵𝑆)))
8 simpl3 1193 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐴𝐵)
9 0ne1 12366 . . . . 5 0 ≠ 1
108, 9jctil 519 . . . 4 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → (0 ≠ 1 ∧ 𝐴𝐵))
11 f1oprg 6909 . . . 4 (((0 ∈ ℤ ∧ 𝐴𝑆) ∧ (1 ∈ ℤ ∧ 𝐵𝑆)) → ((0 ≠ 1 ∧ 𝐴𝐵) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵}))
127, 10, 11sylc 65 . . 3 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵})
13 eqcom 2747 . . . . . 6 (𝐸 = ⟨“𝐴𝐵”⟩ ↔ ⟨“𝐴𝐵”⟩ = 𝐸)
14 s2prop 14958 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
15143adant3 1132 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
1615eqeq1d 2742 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (⟨“𝐴𝐵”⟩ = 𝐸 ↔ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸))
1713, 16bitrid 283 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ ↔ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸))
1817biimpa 476 . . . 4 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = 𝐸)
1918f1oeq1d 6859 . . 3 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵} ↔ 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}))
2012, 19mpbid 232 . 2 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝐸 = ⟨“𝐴𝐵”⟩) → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})
2120ex 412 1 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {cpr 4650  cop 4654  1-1-ontowf1o 6574  0cc0 11186  1c1 11187  cz 12641  ⟨“cs2 14892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-n0 12556  df-z 12642  df-uz 12906  df-fz 13570  df-fzo 13714  df-hash 14382  df-word 14565  df-concat 14621  df-s1 14646  df-s2 14899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator