| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| f1oeq1d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | f1oeq1 6746 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 –1-1-onto→wf1o 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 |
| This theorem is referenced by: f1orescnv 6773 f1osng 6799 f1ocoima 7232 f1ofvswap 7235 dif1en 9066 cnfcomlem 9584 cnfcom2 9587 cnfcom3clem 9590 infxpenc 9904 infxpenc2lem2 9906 infxpenc2 9908 canthp1lem2 10539 pwfseqlem5 10549 pwfseq 10550 s2f1o 14818 s4f1o 14820 bitsf1ocnv 16350 yonffthlem 18183 grplactcnv 18951 eqgen 19088 znunithash 21496 tgpconncompeqg 24022 fcobijfs 32696 fcobijfs2 32697 indf1o 32837 s2f1 32918 ccatws1f1o 32924 mgcf1o 32976 gsummpt2d 33021 gsumwrd2dccat 33039 subfacp1lem3 35218 subfacp1lem5 35220 ismrer1 37878 hvmap1o 41802 3f1oss2 47107 idfu1stf1o 49131 imaidfu 49142 fucoppc 49442 lmdran 49703 |
| Copyright terms: Public domain | W3C validator |