MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq1d Structured version   Visualization version   GIF version

Theorem f1oeq1d 6818
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
f1oeq1d.1 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
f1oeq1d (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐺:𝐴1-1-onto𝐵))

Proof of Theorem f1oeq1d
StepHypRef Expression
1 f1oeq1d.1 . 2 (𝜑𝐹 = 𝐺)
2 f1oeq1 6811 . 2 (𝐹 = 𝐺 → (𝐹:𝐴1-1-onto𝐵𝐺:𝐴1-1-onto𝐵))
31, 2syl 17 1 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐺:𝐴1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  1-1-ontowf1o 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540
This theorem is referenced by:  f1orescnv  6838  f1osng  6864  f1ofvswap  7296  dif1en  9155  dif1enOLD  9157  cnfcomlem  9689  cnfcom2  9692  cnfcom3clem  9695  infxpenc  10008  infxpenc2lem2  10010  infxpenc2  10012  canthp1lem2  10643  pwfseqlem5  10653  pwfseq  10654  s2f1o  14863  s4f1o  14865  bitsf1ocnv  16381  yonffthlem  18234  grplactcnv  18958  eqgen  19093  znunithash  21420  tgpconncompeqg  23926  fcobijfs  32372  s2f1  32535  mgcf1o  32597  gsummpt2d  32628  indf1o  33477  subfacp1lem3  34628  subfacp1lem5  34630  ismrer1  37162  hvmap1o  41090  metakunt34  41477
  Copyright terms: Public domain W3C validator