| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| f1oeq1d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | f1oeq1 6756 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1-onto→wf1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 |
| This theorem is referenced by: f1orescnv 6783 f1osng 6809 f1ocoima 7244 f1ofvswap 7247 dif1en 9084 dif1enOLD 9086 cnfcomlem 9614 cnfcom2 9617 cnfcom3clem 9620 infxpenc 9931 infxpenc2lem2 9933 infxpenc2 9935 canthp1lem2 10566 pwfseqlem5 10576 pwfseq 10577 s2f1o 14842 s4f1o 14844 bitsf1ocnv 16374 yonffthlem 18207 grplactcnv 18941 eqgen 19079 znunithash 21490 tgpconncompeqg 24016 fcobijfs 32684 fcobijfs2 32685 indf1o 32826 s2f1 32905 ccatws1f1o 32912 mgcf1o 32964 gsummpt2d 33021 gsumwrd2dccat 33039 subfacp1lem3 35174 subfacp1lem5 35176 ismrer1 37837 hvmap1o 41762 3f1oss2 47080 idfu1stf1o 49104 imaidfu 49115 fucoppc 49415 lmdran 49676 |
| Copyright terms: Public domain | W3C validator |