| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| f1oeq1d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | f1oeq1 6788 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: f1orescnv 6815 f1osng 6841 f1ocoima 7278 f1ofvswap 7281 dif1en 9124 dif1enOLD 9126 cnfcomlem 9652 cnfcom2 9655 cnfcom3clem 9658 infxpenc 9971 infxpenc2lem2 9973 infxpenc2 9975 canthp1lem2 10606 pwfseqlem5 10616 pwfseq 10617 s2f1o 14882 s4f1o 14884 bitsf1ocnv 16414 yonffthlem 18243 grplactcnv 18975 eqgen 19113 znunithash 21474 tgpconncompeqg 23999 fcobijfs 32646 indf1o 32787 s2f1 32866 ccatws1f1o 32873 mgcf1o 32929 gsummpt2d 32989 gsumwrd2dccat 33007 subfacp1lem3 35169 subfacp1lem5 35171 ismrer1 37832 hvmap1o 41757 3f1oss2 47077 idfu1stf1o 49088 imaidfu 49099 fucoppc 49399 lmdran 49660 |
| Copyright terms: Public domain | W3C validator |