![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
f1oeq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
f1oeq1d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | f1oeq1 6837 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 –1-1-onto→wf1o 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 |
This theorem is referenced by: f1orescnv 6864 f1osng 6890 f1ocoima 7323 f1ofvswap 7326 dif1en 9199 dif1enOLD 9201 cnfcomlem 9737 cnfcom2 9740 cnfcom3clem 9743 infxpenc 10056 infxpenc2lem2 10058 infxpenc2 10060 canthp1lem2 10691 pwfseqlem5 10701 pwfseq 10702 s2f1o 14952 s4f1o 14954 bitsf1ocnv 16478 yonffthlem 18339 grplactcnv 19074 eqgen 19212 znunithash 21601 tgpconncompeqg 24136 fcobijfs 32741 s2f1 32914 ccatws1f1o 32921 mgcf1o 32978 gsummpt2d 33035 gsumwrd2dccat 33053 indf1o 34005 subfacp1lem3 35167 subfacp1lem5 35169 ismrer1 37825 hvmap1o 41746 metakunt34 42220 3f1oss2 47026 |
Copyright terms: Public domain | W3C validator |