| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| f1oeq1d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | f1oeq1 6816 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 –1-1-onto→wf1o 6540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 |
| This theorem is referenced by: f1orescnv 6843 f1osng 6869 f1ocoima 7305 f1ofvswap 7308 dif1en 9182 dif1enOLD 9184 cnfcomlem 9721 cnfcom2 9724 cnfcom3clem 9727 infxpenc 10040 infxpenc2lem2 10042 infxpenc2 10044 canthp1lem2 10675 pwfseqlem5 10685 pwfseq 10686 s2f1o 14937 s4f1o 14939 bitsf1ocnv 16463 yonffthlem 18297 grplactcnv 19030 eqgen 19168 znunithash 21537 tgpconncompeqg 24066 fcobijfs 32669 indf1o 32789 s2f1 32869 ccatws1f1o 32876 mgcf1o 32932 gsummpt2d 32991 gsumwrd2dccat 33009 subfacp1lem3 35146 subfacp1lem5 35148 ismrer1 37804 hvmap1o 41724 metakunt34 42198 3f1oss2 47046 |
| Copyright terms: Public domain | W3C validator |