Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relogf1o | Structured version Visualization version GIF version |
Description: The natural logarithm function maps the positive reals one-to-one onto the real numbers. (Contributed by Paul Chapman, 21-Apr-2008.) |
Ref | Expression |
---|---|
relogf1o | ⊢ (log ↾ ℝ+):ℝ+–1-1-onto→ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eff1o2 25768 | . . . 4 ⊢ (exp ↾ ran log):ran log–1-1-onto→(ℂ ∖ {0}) | |
2 | dff1o3 6752 | . . . . 5 ⊢ ((exp ↾ ran log):ran log–1-1-onto→(ℂ ∖ {0}) ↔ ((exp ↾ ran log):ran log–onto→(ℂ ∖ {0}) ∧ Fun ◡(exp ↾ ran log))) | |
3 | 2 | simprbi 498 | . . . 4 ⊢ ((exp ↾ ran log):ran log–1-1-onto→(ℂ ∖ {0}) → Fun ◡(exp ↾ ran log)) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ Fun ◡(exp ↾ ran log) |
5 | reeff1o 25655 | . . . 4 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | |
6 | relogrn 25766 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ran log) | |
7 | 6 | ssriv 3930 | . . . . 5 ⊢ ℝ ⊆ ran log |
8 | resabs1 5933 | . . . . 5 ⊢ (ℝ ⊆ ran log → ((exp ↾ ran log) ↾ ℝ) = (exp ↾ ℝ)) | |
9 | f1oeq1 6734 | . . . . 5 ⊢ (((exp ↾ ran log) ↾ ℝ) = (exp ↾ ℝ) → (((exp ↾ ran log) ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+)) | |
10 | 7, 8, 9 | mp2b 10 | . . . 4 ⊢ (((exp ↾ ran log) ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+) |
11 | 5, 10 | mpbir 230 | . . 3 ⊢ ((exp ↾ ran log) ↾ ℝ):ℝ–1-1-onto→ℝ+ |
12 | f1orescnv 6761 | . . 3 ⊢ ((Fun ◡(exp ↾ ran log) ∧ ((exp ↾ ran log) ↾ ℝ):ℝ–1-1-onto→ℝ+) → (◡(exp ↾ ran log) ↾ ℝ+):ℝ+–1-1-onto→ℝ) | |
13 | 4, 11, 12 | mp2an 690 | . 2 ⊢ (◡(exp ↾ ran log) ↾ ℝ+):ℝ+–1-1-onto→ℝ |
14 | dflog2 25765 | . . 3 ⊢ log = ◡(exp ↾ ran log) | |
15 | reseq1 5897 | . . 3 ⊢ (log = ◡(exp ↾ ran log) → (log ↾ ℝ+) = (◡(exp ↾ ran log) ↾ ℝ+)) | |
16 | f1oeq1 6734 | . . 3 ⊢ ((log ↾ ℝ+) = (◡(exp ↾ ran log) ↾ ℝ+) → ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ ↔ (◡(exp ↾ ran log) ↾ ℝ+):ℝ+–1-1-onto→ℝ)) | |
17 | 14, 15, 16 | mp2b 10 | . 2 ⊢ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ ↔ (◡(exp ↾ ran log) ↾ ℝ+):ℝ+–1-1-onto→ℝ) |
18 | 13, 17 | mpbir 230 | 1 ⊢ (log ↾ ℝ+):ℝ+–1-1-onto→ℝ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∖ cdif 3889 ⊆ wss 3892 {csn 4565 ◡ccnv 5599 ran crn 5601 ↾ cres 5602 Fun wfun 6452 –onto→wfo 6456 –1-1-onto→wf1o 6457 ℂcc 10919 ℝcr 10920 0cc0 10921 ℝ+crp 12780 expce 15820 logclog 25759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 ax-addf 11000 ax-mulf 11001 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9177 df-fi 9218 df-sup 9249 df-inf 9250 df-oi 9317 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-q 12739 df-rp 12781 df-xneg 12898 df-xadd 12899 df-xmul 12900 df-ioo 13133 df-ioc 13134 df-ico 13135 df-icc 13136 df-fz 13290 df-fzo 13433 df-fl 13562 df-mod 13640 df-seq 13772 df-exp 13833 df-fac 14038 df-bc 14067 df-hash 14095 df-shft 14827 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-limsup 15229 df-clim 15246 df-rlim 15247 df-sum 15447 df-ef 15826 df-sin 15828 df-cos 15829 df-pi 15831 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-mulr 17025 df-starv 17026 df-sca 17027 df-vsca 17028 df-ip 17029 df-tset 17030 df-ple 17031 df-ds 17033 df-unif 17034 df-hom 17035 df-cco 17036 df-rest 17182 df-topn 17183 df-0g 17201 df-gsum 17202 df-topgen 17203 df-pt 17204 df-prds 17207 df-xrs 17262 df-qtop 17267 df-imas 17268 df-xps 17270 df-mre 17344 df-mrc 17345 df-acs 17347 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-submnd 18480 df-mulg 18750 df-cntz 18972 df-cmn 19437 df-psmet 20638 df-xmet 20639 df-met 20640 df-bl 20641 df-mopn 20642 df-fbas 20643 df-fg 20644 df-cnfld 20647 df-top 22092 df-topon 22109 df-topsp 22131 df-bases 22145 df-cld 22219 df-ntr 22220 df-cls 22221 df-nei 22298 df-lp 22336 df-perf 22337 df-cn 22427 df-cnp 22428 df-haus 22515 df-tx 22762 df-hmeo 22955 df-fil 23046 df-fm 23138 df-flim 23139 df-flf 23140 df-xms 23522 df-ms 23523 df-tms 23524 df-cncf 24090 df-limc 25079 df-dv 25080 df-log 25761 |
This theorem is referenced by: relogcl 25780 relogcn 25842 advlog 25858 advlogexp 25859 logccv 25867 dvcxp1 25942 loglesqrt 25960 amgmlem 26188 logdivsum 26730 log2sumbnd 26741 amgmwlem 46750 |
Copyright terms: Public domain | W3C validator |