MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcdmssb Structured version   Visualization version   GIF version

Theorem fcdmssb 7156
Description: A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021.)
Assertion
Ref Expression
fcdmssb ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → (𝐹:𝐴𝑊𝐹:𝐴𝑉))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑉
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem fcdmssb
StepHypRef Expression
1 simpr 484 . . . 4 ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉)
2 ffn 6747 . . . 4 (𝐹:𝐴𝑊𝐹 Fn 𝐴)
31, 2anim12ci 613 . . 3 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑊) → (𝐹 Fn 𝐴 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉))
4 ffnfv 7153 . . 3 (𝐹:𝐴𝑉 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉))
53, 4sylibr 234 . 2 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑊) → 𝐹:𝐴𝑉)
6 simpl 482 . . . 4 ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → 𝑉𝑊)
76anim1ci 615 . . 3 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑉) → (𝐹:𝐴𝑉𝑉𝑊))
8 fss 6763 . . 3 ((𝐹:𝐴𝑉𝑉𝑊) → 𝐹:𝐴𝑊)
97, 8syl 17 . 2 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑉) → 𝐹:𝐴𝑊)
105, 9impbida 800 1 ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → (𝐹:𝐴𝑊𝐹:𝐴𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067  wss 3976   Fn wfn 6568  wf 6569  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  wlkdlem1  29718  0prjspnrel  42582
  Copyright terms: Public domain W3C validator