| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcdmssb | Structured version Visualization version GIF version | ||
| Description: A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021.) |
| Ref | Expression |
|---|---|
| fcdmssb | ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → (𝐹:𝐴⟶𝑊 ↔ 𝐹:𝐴⟶𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) | |
| 2 | ffn 6646 | . . . 4 ⊢ (𝐹:𝐴⟶𝑊 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | anim12ci 614 | . . 3 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑊) → (𝐹 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉)) |
| 4 | ffnfv 7047 | . . 3 ⊢ (𝐹:𝐴⟶𝑉 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉)) | |
| 5 | 3, 4 | sylibr 234 | . 2 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑊) → 𝐹:𝐴⟶𝑉) |
| 6 | simpl 482 | . . . 4 ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → 𝑉 ⊆ 𝑊) | |
| 7 | 6 | anim1ci 616 | . . 3 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑉) → (𝐹:𝐴⟶𝑉 ∧ 𝑉 ⊆ 𝑊)) |
| 8 | fss 6662 | . . 3 ⊢ ((𝐹:𝐴⟶𝑉 ∧ 𝑉 ⊆ 𝑊) → 𝐹:𝐴⟶𝑊) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑉) → 𝐹:𝐴⟶𝑊) |
| 10 | 5, 9 | impbida 800 | 1 ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → (𝐹:𝐴⟶𝑊 ↔ 𝐹:𝐴⟶𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 Fn wfn 6471 ⟶wf 6472 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 |
| This theorem is referenced by: wlkdlem1 29654 0prjspnrel 42660 |
| Copyright terms: Public domain | W3C validator |