MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcdmssb Structured version   Visualization version   GIF version

Theorem fcdmssb 7050
Description: A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021.)
Assertion
Ref Expression
fcdmssb ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → (𝐹:𝐴𝑊𝐹:𝐴𝑉))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑉
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem fcdmssb
StepHypRef Expression
1 simpr 484 . . . 4 ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉)
2 ffn 6646 . . . 4 (𝐹:𝐴𝑊𝐹 Fn 𝐴)
31, 2anim12ci 614 . . 3 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑊) → (𝐹 Fn 𝐴 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉))
4 ffnfv 7047 . . 3 (𝐹:𝐴𝑉 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉))
53, 4sylibr 234 . 2 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑊) → 𝐹:𝐴𝑉)
6 simpl 482 . . . 4 ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → 𝑉𝑊)
76anim1ci 616 . . 3 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑉) → (𝐹:𝐴𝑉𝑉𝑊))
8 fss 6662 . . 3 ((𝐹:𝐴𝑉𝑉𝑊) → 𝐹:𝐴𝑊)
97, 8syl 17 . 2 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑉) → 𝐹:𝐴𝑊)
105, 9impbida 800 1 ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → (𝐹:𝐴𝑊𝐹:𝐴𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  wss 3897   Fn wfn 6471  wf 6472  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484
This theorem is referenced by:  wlkdlem1  29654  0prjspnrel  42660
  Copyright terms: Public domain W3C validator