| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcdmssb | Structured version Visualization version GIF version | ||
| Description: A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021.) |
| Ref | Expression |
|---|---|
| fcdmssb | ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → (𝐹:𝐴⟶𝑊 ↔ 𝐹:𝐴⟶𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) | |
| 2 | ffn 6659 | . . . 4 ⊢ (𝐹:𝐴⟶𝑊 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | anim12ci 614 | . . 3 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑊) → (𝐹 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉)) |
| 4 | ffnfv 7061 | . . 3 ⊢ (𝐹:𝐴⟶𝑉 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉)) | |
| 5 | 3, 4 | sylibr 234 | . 2 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑊) → 𝐹:𝐴⟶𝑉) |
| 6 | simpl 482 | . . . 4 ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → 𝑉 ⊆ 𝑊) | |
| 7 | 6 | anim1ci 616 | . . 3 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑉) → (𝐹:𝐴⟶𝑉 ∧ 𝑉 ⊆ 𝑊)) |
| 8 | fss 6675 | . . 3 ⊢ ((𝐹:𝐴⟶𝑉 ∧ 𝑉 ⊆ 𝑊) → 𝐹:𝐴⟶𝑊) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑉) → 𝐹:𝐴⟶𝑊) |
| 10 | 5, 9 | impbida 800 | 1 ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → (𝐹:𝐴⟶𝑊 ↔ 𝐹:𝐴⟶𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 |
| This theorem is referenced by: wlkdlem1 29680 0prjspnrel 42785 |
| Copyright terms: Public domain | W3C validator |