| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcdmssb | Structured version Visualization version GIF version | ||
| Description: A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021.) |
| Ref | Expression |
|---|---|
| fcdmssb | ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → (𝐹:𝐴⟶𝑊 ↔ 𝐹:𝐴⟶𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) | |
| 2 | ffn 6706 | . . . 4 ⊢ (𝐹:𝐴⟶𝑊 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | anim12ci 614 | . . 3 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑊) → (𝐹 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉)) |
| 4 | ffnfv 7109 | . . 3 ⊢ (𝐹:𝐴⟶𝑉 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉)) | |
| 5 | 3, 4 | sylibr 234 | . 2 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑊) → 𝐹:𝐴⟶𝑉) |
| 6 | simpl 482 | . . . 4 ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → 𝑉 ⊆ 𝑊) | |
| 7 | 6 | anim1ci 616 | . . 3 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑉) → (𝐹:𝐴⟶𝑉 ∧ 𝑉 ⊆ 𝑊)) |
| 8 | fss 6722 | . . 3 ⊢ ((𝐹:𝐴⟶𝑉 ∧ 𝑉 ⊆ 𝑊) → 𝐹:𝐴⟶𝑊) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑉) → 𝐹:𝐴⟶𝑊) |
| 10 | 5, 9 | impbida 800 | 1 ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → (𝐹:𝐴⟶𝑊 ↔ 𝐹:𝐴⟶𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 |
| This theorem is referenced by: wlkdlem1 29662 0prjspnrel 42650 |
| Copyright terms: Public domain | W3C validator |