MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcdmssb Structured version   Visualization version   GIF version

Theorem fcdmssb 7027
Description: A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021.)
Assertion
Ref Expression
fcdmssb ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → (𝐹:𝐴𝑊𝐹:𝐴𝑉))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑉
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem fcdmssb
StepHypRef Expression
1 simpr 486 . . . 4 ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉)
2 ffn 6630 . . . 4 (𝐹:𝐴𝑊𝐹 Fn 𝐴)
31, 2anim12ci 615 . . 3 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑊) → (𝐹 Fn 𝐴 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉))
4 ffnfv 7024 . . 3 (𝐹:𝐴𝑉 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉))
53, 4sylibr 233 . 2 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑊) → 𝐹:𝐴𝑉)
6 simpl 484 . . . 4 ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → 𝑉𝑊)
76anim1ci 617 . . 3 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑉) → (𝐹:𝐴𝑉𝑉𝑊))
8 fss 6647 . . 3 ((𝐹:𝐴𝑉𝑉𝑊) → 𝐹:𝐴𝑊)
97, 8syl 17 . 2 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑉) → 𝐹:𝐴𝑊)
105, 9impbida 799 1 ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → (𝐹:𝐴𝑊𝐹:𝐴𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2104  wral 3062  wss 3892   Fn wfn 6453  wf 6454  cfv 6458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466
This theorem is referenced by:  wlkdlem1  28095  0prjspnrel  40501
  Copyright terms: Public domain W3C validator