MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkdlem1 Structured version   Visualization version   GIF version

Theorem wlkdlem1 29726
Description: Lemma 1 for wlkd 29730. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
wlkd.p (𝜑𝑃 ∈ Word V)
wlkd.f (𝜑𝐹 ∈ Word V)
wlkd.l (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))
wlkdlem1.v (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
Assertion
Ref Expression
wlkdlem1 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝑉
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem wlkdlem1
StepHypRef Expression
1 wlkd.p . . 3 (𝜑𝑃 ∈ Word V)
2 wrdf 14563 . . 3 (𝑃 ∈ Word V → 𝑃:(0..^(♯‘𝑃))⟶V)
31, 2syl 17 . 2 (𝜑𝑃:(0..^(♯‘𝑃))⟶V)
4 wlkd.l . . . . . 6 (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))
54oveq2d 7454 . . . . 5 (𝜑 → (0..^(♯‘𝑃)) = (0..^((♯‘𝐹) + 1)))
6 wlkd.f . . . . . . . 8 (𝜑𝐹 ∈ Word V)
7 lencl 14577 . . . . . . . 8 (𝐹 ∈ Word V → (♯‘𝐹) ∈ ℕ0)
86, 7syl 17 . . . . . . 7 (𝜑 → (♯‘𝐹) ∈ ℕ0)
98nn0zd 12646 . . . . . 6 (𝜑 → (♯‘𝐹) ∈ ℤ)
10 fzval3 13779 . . . . . 6 ((♯‘𝐹) ∈ ℤ → (0...(♯‘𝐹)) = (0..^((♯‘𝐹) + 1)))
119, 10syl 17 . . . . 5 (𝜑 → (0...(♯‘𝐹)) = (0..^((♯‘𝐹) + 1)))
125, 11eqtr4d 2780 . . . 4 (𝜑 → (0..^(♯‘𝑃)) = (0...(♯‘𝐹)))
1312feq2d 6730 . . 3 (𝜑 → (𝑃:(0..^(♯‘𝑃))⟶V ↔ 𝑃:(0...(♯‘𝐹))⟶V))
14 ssv 4023 . . . 4 𝑉 ⊆ V
15 wlkdlem1.v . . . 4 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
16 fcdmssb 7149 . . . 4 ((𝑉 ⊆ V ∧ ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉) → (𝑃:(0...(♯‘𝐹))⟶V ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉))
1714, 15, 16sylancr 587 . . 3 (𝜑 → (𝑃:(0...(♯‘𝐹))⟶V ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉))
1813, 17bitrd 279 . 2 (𝜑 → (𝑃:(0..^(♯‘𝑃))⟶V ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉))
193, 18mpbid 232 1 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2108  wral 3061  Vcvv 3481  wss 3966  wf 6565  cfv 6569  (class class class)co 7438  0cc0 11162  1c1 11163   + caddc 11165  0cn0 12533  cz 12620  ...cfz 13553  ..^cfzo 13700  chash 14375  Word cword 14558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-card 9986  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-n0 12534  df-z 12621  df-uz 12886  df-fz 13554  df-fzo 13701  df-hash 14376  df-word 14559
This theorem is referenced by:  wlkd  29730
  Copyright terms: Public domain W3C validator