MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkdlem1 Structured version   Visualization version   GIF version

Theorem wlkdlem1 29652
Description: Lemma 1 for wlkd 29656. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
wlkd.p (𝜑𝑃 ∈ Word V)
wlkd.f (𝜑𝐹 ∈ Word V)
wlkd.l (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))
wlkdlem1.v (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
Assertion
Ref Expression
wlkdlem1 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝑉
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem wlkdlem1
StepHypRef Expression
1 wlkd.p . . 3 (𝜑𝑃 ∈ Word V)
2 wrdf 14417 . . 3 (𝑃 ∈ Word V → 𝑃:(0..^(♯‘𝑃))⟶V)
31, 2syl 17 . 2 (𝜑𝑃:(0..^(♯‘𝑃))⟶V)
4 wlkd.l . . . . . 6 (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))
54oveq2d 7357 . . . . 5 (𝜑 → (0..^(♯‘𝑃)) = (0..^((♯‘𝐹) + 1)))
6 wlkd.f . . . . . . . 8 (𝜑𝐹 ∈ Word V)
7 lencl 14432 . . . . . . . 8 (𝐹 ∈ Word V → (♯‘𝐹) ∈ ℕ0)
86, 7syl 17 . . . . . . 7 (𝜑 → (♯‘𝐹) ∈ ℕ0)
98nn0zd 12486 . . . . . 6 (𝜑 → (♯‘𝐹) ∈ ℤ)
10 fzval3 13626 . . . . . 6 ((♯‘𝐹) ∈ ℤ → (0...(♯‘𝐹)) = (0..^((♯‘𝐹) + 1)))
119, 10syl 17 . . . . 5 (𝜑 → (0...(♯‘𝐹)) = (0..^((♯‘𝐹) + 1)))
125, 11eqtr4d 2768 . . . 4 (𝜑 → (0..^(♯‘𝑃)) = (0...(♯‘𝐹)))
1312feq2d 6631 . . 3 (𝜑 → (𝑃:(0..^(♯‘𝑃))⟶V ↔ 𝑃:(0...(♯‘𝐹))⟶V))
14 ssv 3957 . . . 4 𝑉 ⊆ V
15 wlkdlem1.v . . . 4 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
16 fcdmssb 7050 . . . 4 ((𝑉 ⊆ V ∧ ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉) → (𝑃:(0...(♯‘𝐹))⟶V ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉))
1714, 15, 16sylancr 587 . . 3 (𝜑 → (𝑃:(0...(♯‘𝐹))⟶V ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉))
1813, 17bitrd 279 . 2 (𝜑 → (𝑃:(0..^(♯‘𝑃))⟶V ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉))
193, 18mpbid 232 1 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434  wss 3900  wf 6473  cfv 6477  (class class class)co 7341  0cc0 10998  1c1 10999   + caddc 11001  0cn0 12373  cz 12460  ...cfz 13399  ..^cfzo 13546  chash 14229  Word cword 14412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413
This theorem is referenced by:  wlkd  29656
  Copyright terms: Public domain W3C validator