![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkdlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for wlkd 26938. (Contributed by AV, 7-Feb-2021.) |
Ref | Expression |
---|---|
wlkd.p | ⊢ (𝜑 → 𝑃 ∈ Word V) |
wlkd.f | ⊢ (𝜑 → 𝐹 ∈ Word V) |
wlkd.l | ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) |
wlkdlem1.v | ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) |
Ref | Expression |
---|---|
wlkdlem1 | ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkd.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ Word V) | |
2 | wrdf 13538 | . . 3 ⊢ (𝑃 ∈ Word V → 𝑃:(0..^(♯‘𝑃))⟶V) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝑃:(0..^(♯‘𝑃))⟶V) |
4 | wlkd.l | . . . . . 6 ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) | |
5 | 4 | oveq2d 6895 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝑃)) = (0..^((♯‘𝐹) + 1))) |
6 | wlkd.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ Word V) | |
7 | lencl 13552 | . . . . . . . 8 ⊢ (𝐹 ∈ Word V → (♯‘𝐹) ∈ ℕ0) | |
8 | 6, 7 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐹) ∈ ℕ0) |
9 | 8 | nn0zd 11769 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐹) ∈ ℤ) |
10 | fzval3 12791 | . . . . . 6 ⊢ ((♯‘𝐹) ∈ ℤ → (0...(♯‘𝐹)) = (0..^((♯‘𝐹) + 1))) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → (0...(♯‘𝐹)) = (0..^((♯‘𝐹) + 1))) |
12 | 5, 11 | eqtr4d 2837 | . . . 4 ⊢ (𝜑 → (0..^(♯‘𝑃)) = (0...(♯‘𝐹))) |
13 | 12 | feq2d 6243 | . . 3 ⊢ (𝜑 → (𝑃:(0..^(♯‘𝑃))⟶V ↔ 𝑃:(0...(♯‘𝐹))⟶V)) |
14 | ssv 3822 | . . . 4 ⊢ 𝑉 ⊆ V | |
15 | wlkdlem1.v | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) | |
16 | frnssb 6618 | . . . 4 ⊢ ((𝑉 ⊆ V ∧ ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) → (𝑃:(0...(♯‘𝐹))⟶V ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉)) | |
17 | 14, 15, 16 | sylancr 582 | . . 3 ⊢ (𝜑 → (𝑃:(0...(♯‘𝐹))⟶V ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
18 | 13, 17 | bitrd 271 | . 2 ⊢ (𝜑 → (𝑃:(0..^(♯‘𝑃))⟶V ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
19 | 3, 18 | mpbid 224 | 1 ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ∀wral 3090 Vcvv 3386 ⊆ wss 3770 ⟶wf 6098 ‘cfv 6102 (class class class)co 6879 0cc0 10225 1c1 10226 + caddc 10228 ℕ0cn0 11579 ℤcz 11665 ...cfz 12579 ..^cfzo 12719 ♯chash 13369 Word cword 13533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-oadd 7804 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-card 9052 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-n0 11580 df-z 11666 df-uz 11930 df-fz 12580 df-fzo 12720 df-hash 13370 df-word 13534 |
This theorem is referenced by: wlkd 26938 |
Copyright terms: Public domain | W3C validator |