Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnfvrnss | Structured version Visualization version GIF version |
Description: An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.) |
Ref | Expression |
---|---|
fnfvrnss | ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffnfv 6992 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
2 | frn 6607 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 1, 2 | sylbir 234 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ran crn 5590 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 |
This theorem is referenced by: ffvresb 6998 dffi3 9190 infxpenlem 9769 alephsing 10032 seqexw 13737 srgfcl 19751 mplind 21278 1stckgenlem 22704 psmetxrge0 23466 plyreres 25443 aannenlem1 25488 subuhgr 27653 subupgr 27654 subumgr 27655 subusgr 27656 elrspunidl 31606 rmulccn 31878 esumfsup 32038 sxbrsigalem3 32239 sitgf 32314 ctbssinf 35577 dihf11lem 39280 hdmaprnN 39878 hgmaprnN 39915 ntrrn 41732 mnurndlem1 41899 volicoff 43536 dirkercncflem2 43645 fourierdlem15 43663 fourierdlem42 43690 |
Copyright terms: Public domain | W3C validator |