![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnfvrnss | Structured version Visualization version GIF version |
Description: An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.) |
Ref | Expression |
---|---|
fnfvrnss | ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffnfv 6528 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
2 | frn 6191 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 1, 2 | sylbir 225 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 ∀wral 3061 ⊆ wss 3723 ran crn 5250 Fn wfn 6024 ⟶wf 6025 ‘cfv 6029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-fv 6037 |
This theorem is referenced by: ffvresb 6534 dffi3 8491 infxpenlem 9034 alephsing 9298 srgfcl 18716 mplind 19710 1stckgenlem 21570 psmetxrge0 22331 plyreres 24251 aannenlem1 24296 subuhgr 26394 subupgr 26395 subumgr 26396 subusgr 26397 rmulccn 30307 esumfsup 30465 sxbrsigalem3 30667 sitgf 30742 dihf11lem 37069 hdmaprnN 37667 hgmaprnN 37704 ntrrn 38939 volicoff 40722 dirkercncflem2 40831 fourierdlem15 40849 fourierdlem42 40876 |
Copyright terms: Public domain | W3C validator |