MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvrnss Structured version   Visualization version   GIF version

Theorem fnfvrnss 7059
Description: An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.)
Assertion
Ref Expression
fnfvrnss ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → ran 𝐹𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fnfvrnss
StepHypRef Expression
1 ffnfv 7057 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 frn 6663 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2sylbir 235 1 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → ran 𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  wss 3905  ran crn 5624   Fn wfn 6481  wf 6482  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494
This theorem is referenced by:  ffvresb  7063  dffi3  9340  infxpenlem  9926  alephsing  10189  seqexw  13942  srgfcl  20099  mplind  21993  1stckgenlem  23456  psmetxrge0  24217  plyreres  26206  aannenlem1  26252  bdayn0sf1o  28282  dfnns2  28284  subuhgr  29249  subupgr  29250  subumgr  29251  subusgr  29252  elrspunidl  33378  rmulccn  33897  esumfsup  34039  sxbrsigalem3  34242  sitgf  34317  ctbssinf  37382  dihf11lem  41248  hdmaprnN  41846  hgmaprnN  41883  ofoafg  43330  naddcnff  43338  ntrrn  44098  mnurndlem1  44257  volicoff  45980  dirkercncflem2  46089  fourierdlem15  46107  fourierdlem42  46134  grimuhgr  47875  slotresfo  48887
  Copyright terms: Public domain W3C validator