| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvrnss | Structured version Visualization version GIF version | ||
| Description: An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.) |
| Ref | Expression |
|---|---|
| fnfvrnss | ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfv 7073 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 2 | frn 6677 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 3 | 1, 2 | sylbir 235 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ran crn 5632 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 |
| This theorem is referenced by: ffvresb 7079 dffi3 9358 infxpenlem 9942 alephsing 10205 seqexw 13958 srgfcl 20081 mplind 21953 1stckgenlem 23416 psmetxrge0 24177 plyreres 26166 aannenlem1 26212 bdayn0sf1o 28235 dfnns2 28237 subuhgr 29189 subupgr 29190 subumgr 29191 subusgr 29192 elrspunidl 33372 rmulccn 33891 esumfsup 34033 sxbrsigalem3 34236 sitgf 34311 ctbssinf 37367 dihf11lem 41233 hdmaprnN 41831 hgmaprnN 41868 ofoafg 43316 naddcnff 43324 ntrrn 44084 mnurndlem1 44243 volicoff 45966 dirkercncflem2 46075 fourierdlem15 46093 fourierdlem42 46120 grimuhgr 47860 slotresfo 48860 |
| Copyright terms: Public domain | W3C validator |