MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvrnss Structured version   Visualization version   GIF version

Theorem fnfvrnss 7049
Description: An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.)
Assertion
Ref Expression
fnfvrnss ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → ran 𝐹𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fnfvrnss
StepHypRef Expression
1 ffnfv 7047 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 frn 6653 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2sylbir 235 1 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → ran 𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  wss 3897  ran crn 5612   Fn wfn 6471  wf 6472  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484
This theorem is referenced by:  ffvresb  7053  dffi3  9310  infxpenlem  9899  alephsing  10162  seqexw  13919  srgfcl  20109  mplind  22000  1stckgenlem  23463  psmetxrge0  24223  plyreres  26212  aannenlem1  26258  bdayn0sf1o  28290  dfnns2  28292  subuhgr  29259  subupgr  29260  subumgr  29261  subusgr  29262  elrspunidl  33385  rmulccn  33933  esumfsup  34075  sxbrsigalem3  34277  sitgf  34352  ctbssinf  37440  dihf11lem  41305  hdmaprnN  41903  hgmaprnN  41940  ofoafg  43387  naddcnff  43395  ntrrn  44155  mnurndlem1  44314  volicoff  46033  dirkercncflem2  46142  fourierdlem15  46160  fourierdlem42  46187  grimuhgr  47918  slotresfo  48930
  Copyright terms: Public domain W3C validator