![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnfvrnss | Structured version Visualization version GIF version |
Description: An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.) |
Ref | Expression |
---|---|
fnfvrnss | ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffnfv 7153 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
2 | frn 6754 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 1, 2 | sylbir 235 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ran crn 5701 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: ffvresb 7159 dffi3 9500 infxpenlem 10082 alephsing 10345 seqexw 14068 srgfcl 20223 mplind 22117 1stckgenlem 23582 psmetxrge0 24344 plyreres 26342 aannenlem1 26388 dfnns2 28380 subuhgr 29321 subupgr 29322 subumgr 29323 subusgr 29324 elrspunidl 33421 rmulccn 33874 esumfsup 34034 sxbrsigalem3 34237 sitgf 34312 ctbssinf 37372 dihf11lem 41223 hdmaprnN 41821 hgmaprnN 41858 ofoafg 43316 naddcnff 43324 ntrrn 44084 mnurndlem1 44250 volicoff 45916 dirkercncflem2 46025 fourierdlem15 46043 fourierdlem42 46070 grimuhgr 47762 |
Copyright terms: Public domain | W3C validator |