| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvrnss | Structured version Visualization version GIF version | ||
| Description: An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.) |
| Ref | Expression |
|---|---|
| fnfvrnss | ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfv 7047 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 2 | frn 6653 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 3 | 1, 2 | sylbir 235 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ran crn 5612 Fn wfn 6471 ⟶wf 6472 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 |
| This theorem is referenced by: ffvresb 7053 dffi3 9310 infxpenlem 9899 alephsing 10162 seqexw 13919 srgfcl 20109 mplind 22000 1stckgenlem 23463 psmetxrge0 24223 plyreres 26212 aannenlem1 26258 bdayn0sf1o 28290 dfnns2 28292 subuhgr 29259 subupgr 29260 subumgr 29261 subusgr 29262 elrspunidl 33385 rmulccn 33933 esumfsup 34075 sxbrsigalem3 34277 sitgf 34352 ctbssinf 37440 dihf11lem 41305 hdmaprnN 41903 hgmaprnN 41940 ofoafg 43387 naddcnff 43395 ntrrn 44155 mnurndlem1 44314 volicoff 46033 dirkercncflem2 46142 fourierdlem15 46160 fourierdlem42 46187 grimuhgr 47918 slotresfo 48930 |
| Copyright terms: Public domain | W3C validator |