| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvrnss | Structured version Visualization version GIF version | ||
| Description: An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.) |
| Ref | Expression |
|---|---|
| fnfvrnss | ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfv 7057 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 2 | frn 6663 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 3 | 1, 2 | sylbir 235 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3905 ran crn 5624 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 |
| This theorem is referenced by: ffvresb 7063 dffi3 9340 infxpenlem 9926 alephsing 10189 seqexw 13942 srgfcl 20099 mplind 21993 1stckgenlem 23456 psmetxrge0 24217 plyreres 26206 aannenlem1 26252 bdayn0sf1o 28282 dfnns2 28284 subuhgr 29249 subupgr 29250 subumgr 29251 subusgr 29252 elrspunidl 33378 rmulccn 33897 esumfsup 34039 sxbrsigalem3 34242 sitgf 34317 ctbssinf 37382 dihf11lem 41248 hdmaprnN 41846 hgmaprnN 41883 ofoafg 43330 naddcnff 43338 ntrrn 44098 mnurndlem1 44257 volicoff 45980 dirkercncflem2 46089 fourierdlem15 46107 fourierdlem42 46134 grimuhgr 47875 slotresfo 48887 |
| Copyright terms: Public domain | W3C validator |