| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvrnss | Structured version Visualization version GIF version | ||
| Description: An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.) |
| Ref | Expression |
|---|---|
| fnfvrnss | ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfv 7061 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 2 | frn 6666 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 3 | 1, 2 | sylbir 235 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ran crn 5622 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 |
| This theorem is referenced by: ffvresb 7067 dffi3 9326 infxpenlem 9915 alephsing 10178 seqexw 13931 srgfcl 20122 mplind 22016 1stckgenlem 23488 psmetxrge0 24248 plyreres 26237 aannenlem1 26283 bdayn0sf1o 28315 dfnns2 28317 subuhgr 29285 subupgr 29286 subumgr 29287 subusgr 29288 elrspunidl 33437 rmulccn 34013 esumfsup 34155 sxbrsigalem3 34357 sitgf 34432 ctbssinf 37523 dihf11lem 41438 hdmaprnN 42036 hgmaprnN 42073 ofoafg 43511 naddcnff 43519 ntrrn 44279 mnurndlem1 44438 volicoff 46155 dirkercncflem2 46264 fourierdlem15 46282 fourierdlem42 46309 grimuhgr 48049 slotresfo 49060 |
| Copyright terms: Public domain | W3C validator |