| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresf1b | Structured version Visualization version GIF version | ||
| Description: A composition is injective iff the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 7-Oct-2024.) |
| Ref | Expression |
|---|---|
| fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
| fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
| fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
| fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
| fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
| Ref | Expression |
|---|---|
| fcoresf1b | ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) → 𝐹:𝐴⟶𝐵) |
| 3 | fcores.e | . . . 4 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
| 4 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
| 5 | fcores.x | . . . 4 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
| 6 | fcores.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) → 𝐺:𝐶⟶𝐷) |
| 8 | fcores.y | . . . 4 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) → (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) | |
| 10 | 2, 3, 4, 5, 7, 8, 9 | fcoresf1 47057 | . . 3 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) → (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷)) |
| 11 | 10 | ex 412 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 → (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) |
| 12 | f1co 6731 | . . . 4 ⊢ ((𝑌:𝐸–1-1→𝐷 ∧ 𝑋:𝑃–1-1→𝐸) → (𝑌 ∘ 𝑋):𝑃–1-1→𝐷) | |
| 13 | 12 | ancoms 458 | . . 3 ⊢ ((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷) → (𝑌 ∘ 𝑋):𝑃–1-1→𝐷) |
| 14 | 1, 3, 4, 5, 6, 8 | fcores 47055 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
| 15 | f1eq1 6715 | . . . 4 ⊢ ((𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋) → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑌 ∘ 𝑋):𝑃–1-1→𝐷)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑌 ∘ 𝑋):𝑃–1-1→𝐷)) |
| 17 | 13, 16 | imbitrrid 246 | . 2 ⊢ (𝜑 → ((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷) → (𝐺 ∘ 𝐹):𝑃–1-1→𝐷)) |
| 18 | 11, 17 | impbid 212 | 1 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∩ cin 3902 ◡ccnv 5618 ran crn 5620 ↾ cres 5621 “ cima 5622 ∘ ccom 5623 ⟶wf 6478 –1-1→wf1 6479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-fv 6490 |
| This theorem is referenced by: fcoresf1ob 47061 |
| Copyright terms: Public domain | W3C validator |