![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresf1b | Structured version Visualization version GIF version |
Description: A composition is injective iff the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 7-Oct-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
Ref | Expression |
---|---|
fcoresf1b | ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) → 𝐹:𝐴⟶𝐵) |
3 | fcores.e | . . . 4 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
4 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
5 | fcores.x | . . . 4 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
6 | fcores.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
7 | 6 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) → 𝐺:𝐶⟶𝐷) |
8 | fcores.y | . . . 4 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
9 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) → (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) | |
10 | 2, 3, 4, 5, 7, 8, 9 | fcoresf1 45765 | . . 3 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) → (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷)) |
11 | 10 | ex 413 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 → (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) |
12 | f1co 6796 | . . . 4 ⊢ ((𝑌:𝐸–1-1→𝐷 ∧ 𝑋:𝑃–1-1→𝐸) → (𝑌 ∘ 𝑋):𝑃–1-1→𝐷) | |
13 | 12 | ancoms 459 | . . 3 ⊢ ((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷) → (𝑌 ∘ 𝑋):𝑃–1-1→𝐷) |
14 | 1, 3, 4, 5, 6, 8 | fcores 45763 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
15 | f1eq1 6779 | . . . 4 ⊢ ((𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋) → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑌 ∘ 𝑋):𝑃–1-1→𝐷)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑌 ∘ 𝑋):𝑃–1-1→𝐷)) |
17 | 13, 16 | imbitrrid 245 | . 2 ⊢ (𝜑 → ((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷) → (𝐺 ∘ 𝐹):𝑃–1-1→𝐷)) |
18 | 11, 17 | impbid 211 | 1 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∩ cin 3946 ◡ccnv 5674 ran crn 5676 ↾ cres 5677 “ cima 5678 ∘ ccom 5679 ⟶wf 6536 –1-1→wf1 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-fv 6548 |
This theorem is referenced by: fcoresf1ob 45769 |
Copyright terms: Public domain | W3C validator |