Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresf1b Structured version   Visualization version   GIF version

Theorem fcoresf1b 44451
Description: A composition is injective iff the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 7-Oct-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcoresf1b (𝜑 → ((𝐺𝐹):𝑃1-1𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷)))

Proof of Theorem fcoresf1b
StepHypRef Expression
1 fcores.f . . . . 5 (𝜑𝐹:𝐴𝐵)
21adantr 480 . . . 4 ((𝜑 ∧ (𝐺𝐹):𝑃1-1𝐷) → 𝐹:𝐴𝐵)
3 fcores.e . . . 4 𝐸 = (ran 𝐹𝐶)
4 fcores.p . . . 4 𝑃 = (𝐹𝐶)
5 fcores.x . . . 4 𝑋 = (𝐹𝑃)
6 fcores.g . . . . 5 (𝜑𝐺:𝐶𝐷)
76adantr 480 . . . 4 ((𝜑 ∧ (𝐺𝐹):𝑃1-1𝐷) → 𝐺:𝐶𝐷)
8 fcores.y . . . 4 𝑌 = (𝐺𝐸)
9 simpr 484 . . . 4 ((𝜑 ∧ (𝐺𝐹):𝑃1-1𝐷) → (𝐺𝐹):𝑃1-1𝐷)
102, 3, 4, 5, 7, 8, 9fcoresf1 44450 . . 3 ((𝜑 ∧ (𝐺𝐹):𝑃1-1𝐷) → (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷))
1110ex 412 . 2 (𝜑 → ((𝐺𝐹):𝑃1-1𝐷 → (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷)))
12 f1co 6666 . . . 4 ((𝑌:𝐸1-1𝐷𝑋:𝑃1-1𝐸) → (𝑌𝑋):𝑃1-1𝐷)
1312ancoms 458 . . 3 ((𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷) → (𝑌𝑋):𝑃1-1𝐷)
141, 3, 4, 5, 6, 8fcores 44448 . . . 4 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
15 f1eq1 6649 . . . 4 ((𝐺𝐹) = (𝑌𝑋) → ((𝐺𝐹):𝑃1-1𝐷 ↔ (𝑌𝑋):𝑃1-1𝐷))
1614, 15syl 17 . . 3 (𝜑 → ((𝐺𝐹):𝑃1-1𝐷 ↔ (𝑌𝑋):𝑃1-1𝐷))
1713, 16syl5ibr 245 . 2 (𝜑 → ((𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷) → (𝐺𝐹):𝑃1-1𝐷))
1811, 17impbid 211 1 (𝜑 → ((𝐺𝐹):𝑃1-1𝐷 ↔ (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  cin 3882  ccnv 5579  ran crn 5581  cres 5582  cima 5583  ccom 5584  wf 6414  1-1wf1 6415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-fv 6426
This theorem is referenced by:  fcoresf1ob  44454
  Copyright terms: Public domain W3C validator