Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresf1b | Structured version Visualization version GIF version |
Description: A composition is injective iff the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 7-Oct-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
Ref | Expression |
---|---|
fcoresf1b | ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) → 𝐹:𝐴⟶𝐵) |
3 | fcores.e | . . . 4 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
4 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
5 | fcores.x | . . . 4 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
6 | fcores.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) → 𝐺:𝐶⟶𝐷) |
8 | fcores.y | . . . 4 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) → (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) | |
10 | 2, 3, 4, 5, 7, 8, 9 | fcoresf1 44450 | . . 3 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) → (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷)) |
11 | 10 | ex 412 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 → (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) |
12 | f1co 6666 | . . . 4 ⊢ ((𝑌:𝐸–1-1→𝐷 ∧ 𝑋:𝑃–1-1→𝐸) → (𝑌 ∘ 𝑋):𝑃–1-1→𝐷) | |
13 | 12 | ancoms 458 | . . 3 ⊢ ((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷) → (𝑌 ∘ 𝑋):𝑃–1-1→𝐷) |
14 | 1, 3, 4, 5, 6, 8 | fcores 44448 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
15 | f1eq1 6649 | . . . 4 ⊢ ((𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋) → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑌 ∘ 𝑋):𝑃–1-1→𝐷)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑌 ∘ 𝑋):𝑃–1-1→𝐷)) |
17 | 13, 16 | syl5ibr 245 | . 2 ⊢ (𝜑 → ((𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷) → (𝐺 ∘ 𝐹):𝑃–1-1→𝐷)) |
18 | 11, 17 | impbid 211 | 1 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∩ cin 3882 ◡ccnv 5579 ran crn 5581 ↾ cres 5582 “ cima 5583 ∘ ccom 5584 ⟶wf 6414 –1-1→wf1 6415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-fv 6426 |
This theorem is referenced by: fcoresf1ob 44454 |
Copyright terms: Public domain | W3C validator |