![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unipreima | Structured version Visualization version GIF version |
Description: Preimage of a class union. (Contributed by Thierry Arnoux, 7-Feb-2017.) |
Ref | Expression |
---|---|
unipreima | ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6608 | . 2 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | r19.42v 3197 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥)) | |
3 | 2 | bicomi 224 | . . . . . 6 ⊢ ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥)) |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥))) |
5 | eluni2 4935 | . . . . . . 7 ⊢ ((𝐹‘𝑦) ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥) | |
6 | 5 | anbi2i 622 | . . . . . 6 ⊢ ((𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥)) |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥))) |
8 | elpreima 7091 | . . . . . 6 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ (◡𝐹 “ 𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥))) | |
9 | 8 | rexbidv 3185 | . . . . 5 ⊢ (𝐹 Fn dom 𝐹 → (∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥))) |
10 | 4, 7, 9 | 3bitr4d 311 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥))) |
11 | elpreima 7091 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ (◡𝐹 “ ∪ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴))) | |
12 | eliun 5019 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥)) | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥))) |
14 | 10, 11, 13 | 3bitr4d 311 | . . 3 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ (◡𝐹 “ ∪ 𝐴) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥))) |
15 | 14 | eqrdv 2738 | . 2 ⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ ∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
16 | 1, 15 | sylbi 217 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∪ cuni 4931 ∪ ciun 5015 ◡ccnv 5699 dom cdm 5700 “ cima 5703 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: imambfm 34227 dstrvprob 34436 |
Copyright terms: Public domain | W3C validator |