Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipreima Structured version   Visualization version   GIF version

Theorem unipreima 32621
Description: Preimage of a class union. (Contributed by Thierry Arnoux, 7-Feb-2017.)
Assertion
Ref Expression
unipreima (Fun 𝐹 → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem unipreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funfn 6566 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 r19.42v 3176 . . . . . . 7 (∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥))
32bicomi 224 . . . . . 6 ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥) ↔ ∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥))
43a1i 11 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥) ↔ ∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥)))
5 eluni2 4887 . . . . . . 7 ((𝐹𝑦) ∈ 𝐴 ↔ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥)
65anbi2i 623 . . . . . 6 ((𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥))
76a1i 11 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥)))
8 elpreima 7048 . . . . . 6 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (𝐹𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥)))
98rexbidv 3164 . . . . 5 (𝐹 Fn dom 𝐹 → (∃𝑥𝐴 𝑦 ∈ (𝐹𝑥) ↔ ∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥)))
104, 7, 93bitr4d 311 . . . 4 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐹𝑥)))
11 elpreima 7048 . . . 4 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (𝐹 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴)))
12 eliun 4971 . . . . 5 (𝑦 𝑥𝐴 (𝐹𝑥) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐹𝑥))
1312a1i 11 . . . 4 (𝐹 Fn dom 𝐹 → (𝑦 𝑥𝐴 (𝐹𝑥) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐹𝑥)))
1410, 11, 133bitr4d 311 . . 3 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (𝐹 𝐴) ↔ 𝑦 𝑥𝐴 (𝐹𝑥)))
1514eqrdv 2733 . 2 (𝐹 Fn dom 𝐹 → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
161, 15sylbi 217 1 (Fun 𝐹 → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060   cuni 4883   ciun 4967  ccnv 5653  dom cdm 5654  cima 5657  Fun wfun 6525   Fn wfn 6526  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539
This theorem is referenced by:  imambfm  34294  dstrvprob  34504
  Copyright terms: Public domain W3C validator