Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipreima Structured version   Visualization version   GIF version

Theorem unipreima 32653
Description: Preimage of a class union. (Contributed by Thierry Arnoux, 7-Feb-2017.)
Assertion
Ref Expression
unipreima (Fun 𝐹 → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem unipreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funfn 6596 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 r19.42v 3191 . . . . . . 7 (∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥))
32bicomi 224 . . . . . 6 ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥) ↔ ∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥))
43a1i 11 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥) ↔ ∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥)))
5 eluni2 4911 . . . . . . 7 ((𝐹𝑦) ∈ 𝐴 ↔ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥)
65anbi2i 623 . . . . . 6 ((𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥))
76a1i 11 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥)))
8 elpreima 7078 . . . . . 6 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (𝐹𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥)))
98rexbidv 3179 . . . . 5 (𝐹 Fn dom 𝐹 → (∃𝑥𝐴 𝑦 ∈ (𝐹𝑥) ↔ ∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥)))
104, 7, 93bitr4d 311 . . . 4 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐹𝑥)))
11 elpreima 7078 . . . 4 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (𝐹 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴)))
12 eliun 4995 . . . . 5 (𝑦 𝑥𝐴 (𝐹𝑥) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐹𝑥))
1312a1i 11 . . . 4 (𝐹 Fn dom 𝐹 → (𝑦 𝑥𝐴 (𝐹𝑥) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐹𝑥)))
1410, 11, 133bitr4d 311 . . 3 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (𝐹 𝐴) ↔ 𝑦 𝑥𝐴 (𝐹𝑥)))
1514eqrdv 2735 . 2 (𝐹 Fn dom 𝐹 → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
161, 15sylbi 217 1 (Fun 𝐹 → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070   cuni 4907   ciun 4991  ccnv 5684  dom cdm 5685  cima 5688  Fun wfun 6555   Fn wfn 6556  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569
This theorem is referenced by:  imambfm  34264  dstrvprob  34474
  Copyright terms: Public domain W3C validator