| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unipreima | Structured version Visualization version GIF version | ||
| Description: Preimage of a class union. (Contributed by Thierry Arnoux, 7-Feb-2017.) |
| Ref | Expression |
|---|---|
| unipreima | ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6512 | . 2 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | r19.42v 3161 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥)) | |
| 3 | 2 | bicomi 224 | . . . . . 6 ⊢ ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥)) |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥))) |
| 5 | eluni2 4862 | . . . . . . 7 ⊢ ((𝐹‘𝑦) ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥) | |
| 6 | 5 | anbi2i 623 | . . . . . 6 ⊢ ((𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥)) |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥))) |
| 8 | elpreima 6992 | . . . . . 6 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ (◡𝐹 “ 𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥))) | |
| 9 | 8 | rexbidv 3153 | . . . . 5 ⊢ (𝐹 Fn dom 𝐹 → (∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥))) |
| 10 | 4, 7, 9 | 3bitr4d 311 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥))) |
| 11 | elpreima 6992 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ (◡𝐹 “ ∪ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴))) | |
| 12 | eliun 4945 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥)) | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥))) |
| 14 | 10, 11, 13 | 3bitr4d 311 | . . 3 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ (◡𝐹 “ ∪ 𝐴) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥))) |
| 15 | 14 | eqrdv 2727 | . 2 ⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ ∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
| 16 | 1, 15 | sylbi 217 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∪ cuni 4858 ∪ ciun 4941 ◡ccnv 5618 dom cdm 5619 “ cima 5622 Fun wfun 6476 Fn wfn 6477 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 |
| This theorem is referenced by: imambfm 34230 dstrvprob 34440 |
| Copyright terms: Public domain | W3C validator |