Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipreima Structured version   Visualization version   GIF version

Theorem unipreima 32586
Description: Preimage of a class union. (Contributed by Thierry Arnoux, 7-Feb-2017.)
Assertion
Ref Expression
unipreima (Fun 𝐹 → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem unipreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funfn 6512 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 r19.42v 3161 . . . . . . 7 (∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥))
32bicomi 224 . . . . . 6 ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥) ↔ ∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥))
43a1i 11 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥) ↔ ∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥)))
5 eluni2 4862 . . . . . . 7 ((𝐹𝑦) ∈ 𝐴 ↔ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥)
65anbi2i 623 . . . . . 6 ((𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥))
76a1i 11 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝑥)))
8 elpreima 6992 . . . . . 6 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (𝐹𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥)))
98rexbidv 3153 . . . . 5 (𝐹 Fn dom 𝐹 → (∃𝑥𝐴 𝑦 ∈ (𝐹𝑥) ↔ ∃𝑥𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝑥)))
104, 7, 93bitr4d 311 . . . 4 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐹𝑥)))
11 elpreima 6992 . . . 4 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (𝐹 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹𝑦) ∈ 𝐴)))
12 eliun 4945 . . . . 5 (𝑦 𝑥𝐴 (𝐹𝑥) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐹𝑥))
1312a1i 11 . . . 4 (𝐹 Fn dom 𝐹 → (𝑦 𝑥𝐴 (𝐹𝑥) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐹𝑥)))
1410, 11, 133bitr4d 311 . . 3 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (𝐹 𝐴) ↔ 𝑦 𝑥𝐴 (𝐹𝑥)))
1514eqrdv 2727 . 2 (𝐹 Fn dom 𝐹 → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
161, 15sylbi 217 1 (Fun 𝐹 → (𝐹 𝐴) = 𝑥𝐴 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053   cuni 4858   ciun 4941  ccnv 5618  dom cdm 5619  cima 5622  Fun wfun 6476   Fn wfn 6477  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490
This theorem is referenced by:  imambfm  34230  dstrvprob  34440
  Copyright terms: Public domain W3C validator