| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unipreima | Structured version Visualization version GIF version | ||
| Description: Preimage of a class union. (Contributed by Thierry Arnoux, 7-Feb-2017.) |
| Ref | Expression |
|---|---|
| unipreima | ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6506 | . 2 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | r19.42v 3164 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥)) | |
| 3 | 2 | bicomi 224 | . . . . . 6 ⊢ ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥)) |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥))) |
| 5 | eluni2 4858 | . . . . . . 7 ⊢ ((𝐹‘𝑦) ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥) | |
| 6 | 5 | anbi2i 623 | . . . . . 6 ⊢ ((𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥)) |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥))) |
| 8 | elpreima 6986 | . . . . . 6 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ (◡𝐹 “ 𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥))) | |
| 9 | 8 | rexbidv 3156 | . . . . 5 ⊢ (𝐹 Fn dom 𝐹 → (∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥))) |
| 10 | 4, 7, 9 | 3bitr4d 311 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥))) |
| 11 | elpreima 6986 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ (◡𝐹 “ ∪ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴))) | |
| 12 | eliun 4940 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥)) | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥))) |
| 14 | 10, 11, 13 | 3bitr4d 311 | . . 3 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ (◡𝐹 “ ∪ 𝐴) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥))) |
| 15 | 14 | eqrdv 2729 | . 2 ⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ ∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
| 16 | 1, 15 | sylbi 217 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∪ cuni 4854 ∪ ciun 4936 ◡ccnv 5610 dom cdm 5611 “ cima 5614 Fun wfun 6470 Fn wfn 6471 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-fv 6484 |
| This theorem is referenced by: imambfm 34267 dstrvprob 34477 |
| Copyright terms: Public domain | W3C validator |