Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofresid Structured version   Visualization version   GIF version

Theorem ofresid 31087
Description: Applying an operation restricted to the range of the functions does not change the function operation. (Contributed by Thierry Arnoux, 14-Feb-2018.)
Hypotheses
Ref Expression
ofresid.1 (𝜑𝐹:𝐴𝐵)
ofresid.2 (𝜑𝐺:𝐴𝐵)
ofresid.3 (𝜑𝐴𝑉)
Assertion
Ref Expression
ofresid (𝜑 → (𝐹f 𝑅𝐺) = (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺))

Proof of Theorem ofresid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofresid.1 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffvelcdmda 6998 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
3 ofresid.2 . . . . . . . 8 (𝜑𝐺:𝐴𝐵)
43ffvelcdmda 6998 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝐵)
52, 4opelxpd 5643 . . . . . 6 ((𝜑𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐵))
65fvresd 6829 . . . . 5 ((𝜑𝑥𝐴) → ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩))
76eqcomd 2743 . . . 4 ((𝜑𝑥𝐴) → (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩) = ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩))
8 df-ov 7316 . . . 4 ((𝐹𝑥)𝑅(𝐺𝑥)) = (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩)
9 df-ov 7316 . . . 4 ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥)) = ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩)
107, 8, 93eqtr4g 2802 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥)𝑅(𝐺𝑥)) = ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥)))
1110mpteq2dva 5185 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝐴 ↦ ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥))))
121ffnd 6636 . . 3 (𝜑𝐹 Fn 𝐴)
133ffnd 6636 . . 3 (𝜑𝐺 Fn 𝐴)
14 ofresid.3 . . 3 (𝜑𝐴𝑉)
15 inidm 4162 . . 3 (𝐴𝐴) = 𝐴
16 eqidd 2738 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
17 eqidd 2738 . . 3 ((𝜑𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
1812, 13, 14, 14, 15, 16, 17offval 7580 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
1912, 13, 14, 14, 15, 16, 17offval 7580 . 2 (𝜑 → (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥))))
2011, 18, 193eqtr4d 2787 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cop 4575  cmpt 5168   × cxp 5603  cres 5607  wf 6459  cfv 6463  (class class class)co 7313  f cof 7569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pr 5365
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-ov 7316  df-oprab 7317  df-mpo 7318  df-of 7571
This theorem is referenced by:  sitmcl  32424
  Copyright terms: Public domain W3C validator