![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofresid | Structured version Visualization version GIF version |
Description: Applying an operation restricted to the range of the functions does not change the function operation. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
Ref | Expression |
---|---|
ofresid.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
ofresid.2 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
ofresid.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
ofresid | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝐹 ∘𝑓 (𝑅 ↾ (𝐵 × 𝐵))𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofresid.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffvelrnda 6716 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
3 | ofresid.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
4 | 3 | ffvelrnda 6716 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝐵) |
5 | 2, 4 | opelxpd 5481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐵)) |
6 | 5 | fvresd 6558 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑅 ↾ (𝐵 × 𝐵))‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) = (𝑅‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
7 | 6 | eqcomd 2801 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) = ((𝑅 ↾ (𝐵 × 𝐵))‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
8 | df-ov 7019 | . . . 4 ⊢ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = (𝑅‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) | |
9 | df-ov 7019 | . . . 4 ⊢ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)) = ((𝑅 ↾ (𝐵 × 𝐵))‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) | |
10 | 7, 8, 9 | 3eqtr4g 2856 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥))) |
11 | 10 | mpteq2dva 5055 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)))) |
12 | 1 | ffnd 6383 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
13 | 3 | ffnd 6383 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) |
14 | ofresid.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
15 | inidm 4115 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
16 | eqidd 2796 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
17 | eqidd 2796 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
18 | 12, 13, 14, 14, 15, 16, 17 | offval 7274 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
19 | 12, 13, 14, 14, 15, 16, 17 | offval 7274 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 (𝑅 ↾ (𝐵 × 𝐵))𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)))) |
20 | 11, 18, 19 | 3eqtr4d 2841 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝐹 ∘𝑓 (𝑅 ↾ (𝐵 × 𝐵))𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 〈cop 4478 ↦ cmpt 5041 × cxp 5441 ↾ cres 5445 ⟶wf 6221 ‘cfv 6225 (class class class)co 7016 ∘𝑓 cof 7265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-of 7267 |
This theorem is referenced by: sitmcl 31226 |
Copyright terms: Public domain | W3C validator |