Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofresid Structured version   Visualization version   GIF version

Theorem ofresid 32134
Description: Applying an operation restricted to the range of the functions does not change the function operation. (Contributed by Thierry Arnoux, 14-Feb-2018.)
Hypotheses
Ref Expression
ofresid.1 (𝜑𝐹:𝐴𝐵)
ofresid.2 (𝜑𝐺:𝐴𝐵)
ofresid.3 (𝜑𝐴𝑉)
Assertion
Ref Expression
ofresid (𝜑 → (𝐹f 𝑅𝐺) = (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺))

Proof of Theorem ofresid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofresid.1 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffvelcdmda 7085 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
3 ofresid.2 . . . . . . . 8 (𝜑𝐺:𝐴𝐵)
43ffvelcdmda 7085 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝐵)
52, 4opelxpd 5714 . . . . . 6 ((𝜑𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐵))
65fvresd 6910 . . . . 5 ((𝜑𝑥𝐴) → ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩))
76eqcomd 2736 . . . 4 ((𝜑𝑥𝐴) → (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩) = ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩))
8 df-ov 7414 . . . 4 ((𝐹𝑥)𝑅(𝐺𝑥)) = (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩)
9 df-ov 7414 . . . 4 ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥)) = ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩)
107, 8, 93eqtr4g 2795 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥)𝑅(𝐺𝑥)) = ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥)))
1110mpteq2dva 5247 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝐴 ↦ ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥))))
121ffnd 6717 . . 3 (𝜑𝐹 Fn 𝐴)
133ffnd 6717 . . 3 (𝜑𝐺 Fn 𝐴)
14 ofresid.3 . . 3 (𝜑𝐴𝑉)
15 inidm 4217 . . 3 (𝐴𝐴) = 𝐴
16 eqidd 2731 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
17 eqidd 2731 . . 3 ((𝜑𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
1812, 13, 14, 14, 15, 16, 17offval 7681 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
1912, 13, 14, 14, 15, 16, 17offval 7681 . 2 (𝜑 → (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥))))
2011, 18, 193eqtr4d 2780 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  cop 4633  cmpt 5230   × cxp 5673  cres 5677  wf 6538  cfv 6542  (class class class)co 7411  f cof 7670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672
This theorem is referenced by:  sitmcl  33648
  Copyright terms: Public domain W3C validator