![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofresid | Structured version Visualization version GIF version |
Description: Applying an operation restricted to the range of the functions does not change the function operation. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
Ref | Expression |
---|---|
ofresid.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
ofresid.2 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
ofresid.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
ofresid | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f (𝑅 ↾ (𝐵 × 𝐵))𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofresid.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffvelcdmda 7085 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
3 | ofresid.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
4 | 3 | ffvelcdmda 7085 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝐵) |
5 | 2, 4 | opelxpd 5714 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ⟨(𝐹‘𝑥), (𝐺‘𝑥)⟩ ∈ (𝐵 × 𝐵)) |
6 | 5 | fvresd 6910 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹‘𝑥), (𝐺‘𝑥)⟩) = (𝑅‘⟨(𝐹‘𝑥), (𝐺‘𝑥)⟩)) |
7 | 6 | eqcomd 2736 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅‘⟨(𝐹‘𝑥), (𝐺‘𝑥)⟩) = ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹‘𝑥), (𝐺‘𝑥)⟩)) |
8 | df-ov 7414 | . . . 4 ⊢ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = (𝑅‘⟨(𝐹‘𝑥), (𝐺‘𝑥)⟩) | |
9 | df-ov 7414 | . . . 4 ⊢ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)) = ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹‘𝑥), (𝐺‘𝑥)⟩) | |
10 | 7, 8, 9 | 3eqtr4g 2795 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥))) |
11 | 10 | mpteq2dva 5247 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)))) |
12 | 1 | ffnd 6717 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
13 | 3 | ffnd 6717 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) |
14 | ofresid.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
15 | inidm 4217 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
16 | eqidd 2731 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
17 | eqidd 2731 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
18 | 12, 13, 14, 14, 15, 16, 17 | offval 7681 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
19 | 12, 13, 14, 14, 15, 16, 17 | offval 7681 | . 2 ⊢ (𝜑 → (𝐹 ∘f (𝑅 ↾ (𝐵 × 𝐵))𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)))) |
20 | 11, 18, 19 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f (𝑅 ↾ (𝐵 × 𝐵))𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ⟨cop 4633 ↦ cmpt 5230 × cxp 5673 ↾ cres 5677 ⟶wf 6538 ‘cfv 6542 (class class class)co 7411 ∘f cof 7670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 |
This theorem is referenced by: sitmcl 33648 |
Copyright terms: Public domain | W3C validator |