Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofresid | Structured version Visualization version GIF version |
Description: Applying an operation restricted to the range of the functions does not change the function operation. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
Ref | Expression |
---|---|
ofresid.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
ofresid.2 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
ofresid.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
ofresid | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f (𝑅 ↾ (𝐵 × 𝐵))𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofresid.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffvelrnda 6943 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
3 | ofresid.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
4 | 3 | ffvelrnda 6943 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝐵) |
5 | 2, 4 | opelxpd 5618 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐵)) |
6 | 5 | fvresd 6776 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑅 ↾ (𝐵 × 𝐵))‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) = (𝑅‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
7 | 6 | eqcomd 2744 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) = ((𝑅 ↾ (𝐵 × 𝐵))‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
8 | df-ov 7258 | . . . 4 ⊢ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = (𝑅‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) | |
9 | df-ov 7258 | . . . 4 ⊢ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)) = ((𝑅 ↾ (𝐵 × 𝐵))‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) | |
10 | 7, 8, 9 | 3eqtr4g 2804 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥))) |
11 | 10 | mpteq2dva 5170 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)))) |
12 | 1 | ffnd 6585 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
13 | 3 | ffnd 6585 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) |
14 | ofresid.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
15 | inidm 4149 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
16 | eqidd 2739 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
17 | eqidd 2739 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
18 | 12, 13, 14, 14, 15, 16, 17 | offval 7520 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
19 | 12, 13, 14, 14, 15, 16, 17 | offval 7520 | . 2 ⊢ (𝜑 → (𝐹 ∘f (𝑅 ↾ (𝐵 × 𝐵))𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)))) |
20 | 11, 18, 19 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f (𝑅 ↾ (𝐵 × 𝐵))𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 ↦ cmpt 5153 × cxp 5578 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 |
This theorem is referenced by: sitmcl 32218 |
Copyright terms: Public domain | W3C validator |