Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofresid Structured version   Visualization version   GIF version

Theorem ofresid 32616
Description: Applying an operation restricted to the range of the functions does not change the function operation. (Contributed by Thierry Arnoux, 14-Feb-2018.)
Hypotheses
Ref Expression
ofresid.1 (𝜑𝐹:𝐴𝐵)
ofresid.2 (𝜑𝐺:𝐴𝐵)
ofresid.3 (𝜑𝐴𝑉)
Assertion
Ref Expression
ofresid (𝜑 → (𝐹f 𝑅𝐺) = (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺))

Proof of Theorem ofresid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofresid.1 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffvelcdmda 7012 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
3 ofresid.2 . . . . . . . 8 (𝜑𝐺:𝐴𝐵)
43ffvelcdmda 7012 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝐵)
52, 4opelxpd 5650 . . . . . 6 ((𝜑𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐵))
65fvresd 6837 . . . . 5 ((𝜑𝑥𝐴) → ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩))
76eqcomd 2737 . . . 4 ((𝜑𝑥𝐴) → (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩) = ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩))
8 df-ov 7344 . . . 4 ((𝐹𝑥)𝑅(𝐺𝑥)) = (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩)
9 df-ov 7344 . . . 4 ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥)) = ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩)
107, 8, 93eqtr4g 2791 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥)𝑅(𝐺𝑥)) = ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥)))
1110mpteq2dva 5179 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝐴 ↦ ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥))))
121ffnd 6647 . . 3 (𝜑𝐹 Fn 𝐴)
133ffnd 6647 . . 3 (𝜑𝐺 Fn 𝐴)
14 ofresid.3 . . 3 (𝜑𝐴𝑉)
15 inidm 4172 . . 3 (𝐴𝐴) = 𝐴
16 eqidd 2732 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
17 eqidd 2732 . . 3 ((𝜑𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
1812, 13, 14, 14, 15, 16, 17offval 7614 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
1912, 13, 14, 14, 15, 16, 17offval 7614 . 2 (𝜑 → (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥))))
2011, 18, 193eqtr4d 2776 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4577  cmpt 5167   × cxp 5609  cres 5613  wf 6472  cfv 6476  (class class class)co 7341  f cof 7603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605
This theorem is referenced by:  sitmcl  34356
  Copyright terms: Public domain W3C validator