| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofresid | Structured version Visualization version GIF version | ||
| Description: Applying an operation restricted to the range of the functions does not change the function operation. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
| Ref | Expression |
|---|---|
| ofresid.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| ofresid.2 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| ofresid.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ofresid | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f (𝑅 ↾ (𝐵 × 𝐵))𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofresid.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffvelcdmda 7074 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| 3 | ofresid.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
| 4 | 3 | ffvelcdmda 7074 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝐵) |
| 5 | 2, 4 | opelxpd 5693 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐵)) |
| 6 | 5 | fvresd 6896 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑅 ↾ (𝐵 × 𝐵))‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) = (𝑅‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
| 7 | 6 | eqcomd 2741 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) = ((𝑅 ↾ (𝐵 × 𝐵))‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
| 8 | df-ov 7408 | . . . 4 ⊢ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = (𝑅‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) | |
| 9 | df-ov 7408 | . . . 4 ⊢ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)) = ((𝑅 ↾ (𝐵 × 𝐵))‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) | |
| 10 | 7, 8, 9 | 3eqtr4g 2795 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥))) |
| 11 | 10 | mpteq2dva 5214 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)))) |
| 12 | 1 | ffnd 6707 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 13 | 3 | ffnd 6707 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| 14 | ofresid.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 15 | inidm 4202 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 16 | eqidd 2736 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 17 | eqidd 2736 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 18 | 12, 13, 14, 14, 15, 16, 17 | offval 7680 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 19 | 12, 13, 14, 14, 15, 16, 17 | offval 7680 | . 2 ⊢ (𝜑 → (𝐹 ∘f (𝑅 ↾ (𝐵 × 𝐵))𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)))) |
| 20 | 11, 18, 19 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f (𝑅 ↾ (𝐵 × 𝐵))𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 ↦ cmpt 5201 × cxp 5652 ↾ cres 5656 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 |
| This theorem is referenced by: sitmcl 34383 |
| Copyright terms: Public domain | W3C validator |