Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofresid Structured version   Visualization version   GIF version

Theorem ofresid 32566
Description: Applying an operation restricted to the range of the functions does not change the function operation. (Contributed by Thierry Arnoux, 14-Feb-2018.)
Hypotheses
Ref Expression
ofresid.1 (𝜑𝐹:𝐴𝐵)
ofresid.2 (𝜑𝐺:𝐴𝐵)
ofresid.3 (𝜑𝐴𝑉)
Assertion
Ref Expression
ofresid (𝜑 → (𝐹f 𝑅𝐺) = (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺))

Proof of Theorem ofresid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofresid.1 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffvelcdmda 7056 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
3 ofresid.2 . . . . . . . 8 (𝜑𝐺:𝐴𝐵)
43ffvelcdmda 7056 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝐵)
52, 4opelxpd 5677 . . . . . 6 ((𝜑𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐵))
65fvresd 6878 . . . . 5 ((𝜑𝑥𝐴) → ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩))
76eqcomd 2735 . . . 4 ((𝜑𝑥𝐴) → (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩) = ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩))
8 df-ov 7390 . . . 4 ((𝐹𝑥)𝑅(𝐺𝑥)) = (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩)
9 df-ov 7390 . . . 4 ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥)) = ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩)
107, 8, 93eqtr4g 2789 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥)𝑅(𝐺𝑥)) = ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥)))
1110mpteq2dva 5200 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝐴 ↦ ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥))))
121ffnd 6689 . . 3 (𝜑𝐹 Fn 𝐴)
133ffnd 6689 . . 3 (𝜑𝐺 Fn 𝐴)
14 ofresid.3 . . 3 (𝜑𝐴𝑉)
15 inidm 4190 . . 3 (𝐴𝐴) = 𝐴
16 eqidd 2730 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
17 eqidd 2730 . . 3 ((𝜑𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
1812, 13, 14, 14, 15, 16, 17offval 7662 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
1912, 13, 14, 14, 15, 16, 17offval 7662 . 2 (𝜑 → (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥))))
2011, 18, 193eqtr4d 2774 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4595  cmpt 5188   × cxp 5636  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653
This theorem is referenced by:  sitmcl  34342
  Copyright terms: Public domain W3C validator