Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofresid Structured version   Visualization version   GIF version

Theorem ofresid 32658
Description: Applying an operation restricted to the range of the functions does not change the function operation. (Contributed by Thierry Arnoux, 14-Feb-2018.)
Hypotheses
Ref Expression
ofresid.1 (𝜑𝐹:𝐴𝐵)
ofresid.2 (𝜑𝐺:𝐴𝐵)
ofresid.3 (𝜑𝐴𝑉)
Assertion
Ref Expression
ofresid (𝜑 → (𝐹f 𝑅𝐺) = (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺))

Proof of Theorem ofresid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofresid.1 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffvelcdmda 7103 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
3 ofresid.2 . . . . . . . 8 (𝜑𝐺:𝐴𝐵)
43ffvelcdmda 7103 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝐵)
52, 4opelxpd 5727 . . . . . 6 ((𝜑𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐵))
65fvresd 6926 . . . . 5 ((𝜑𝑥𝐴) → ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩))
76eqcomd 2740 . . . 4 ((𝜑𝑥𝐴) → (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩) = ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩))
8 df-ov 7433 . . . 4 ((𝐹𝑥)𝑅(𝐺𝑥)) = (𝑅‘⟨(𝐹𝑥), (𝐺𝑥)⟩)
9 df-ov 7433 . . . 4 ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥)) = ((𝑅 ↾ (𝐵 × 𝐵))‘⟨(𝐹𝑥), (𝐺𝑥)⟩)
107, 8, 93eqtr4g 2799 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥)𝑅(𝐺𝑥)) = ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥)))
1110mpteq2dva 5247 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝐴 ↦ ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥))))
121ffnd 6737 . . 3 (𝜑𝐹 Fn 𝐴)
133ffnd 6737 . . 3 (𝜑𝐺 Fn 𝐴)
14 ofresid.3 . . 3 (𝜑𝐴𝑉)
15 inidm 4234 . . 3 (𝐴𝐴) = 𝐴
16 eqidd 2735 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
17 eqidd 2735 . . 3 ((𝜑𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
1812, 13, 14, 14, 15, 16, 17offval 7705 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
1912, 13, 14, 14, 15, 16, 17offval 7705 . 2 (𝜑 → (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺𝑥))))
2011, 18, 193eqtr4d 2784 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝐹f (𝑅 ↾ (𝐵 × 𝐵))𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  cop 4636  cmpt 5230   × cxp 5686  cres 5690  wf 6558  cfv 6562  (class class class)co 7430  f cof 7694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696
This theorem is referenced by:  sitmcl  34332
  Copyright terms: Public domain W3C validator