Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofresid | Structured version Visualization version GIF version |
Description: Applying an operation restricted to the range of the functions does not change the function operation. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
Ref | Expression |
---|---|
ofresid.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
ofresid.2 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
ofresid.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
ofresid | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f (𝑅 ↾ (𝐵 × 𝐵))𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofresid.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffvelcdmda 6998 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
3 | ofresid.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
4 | 3 | ffvelcdmda 6998 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝐵) |
5 | 2, 4 | opelxpd 5643 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐵)) |
6 | 5 | fvresd 6829 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑅 ↾ (𝐵 × 𝐵))‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) = (𝑅‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
7 | 6 | eqcomd 2743 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) = ((𝑅 ↾ (𝐵 × 𝐵))‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
8 | df-ov 7316 | . . . 4 ⊢ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = (𝑅‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) | |
9 | df-ov 7316 | . . . 4 ⊢ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)) = ((𝑅 ↾ (𝐵 × 𝐵))‘〈(𝐹‘𝑥), (𝐺‘𝑥)〉) | |
10 | 7, 8, 9 | 3eqtr4g 2802 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥))) |
11 | 10 | mpteq2dva 5185 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)))) |
12 | 1 | ffnd 6636 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
13 | 3 | ffnd 6636 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) |
14 | ofresid.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
15 | inidm 4162 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
16 | eqidd 2738 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
17 | eqidd 2738 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
18 | 12, 13, 14, 14, 15, 16, 17 | offval 7580 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
19 | 12, 13, 14, 14, 15, 16, 17 | offval 7580 | . 2 ⊢ (𝜑 → (𝐹 ∘f (𝑅 ↾ (𝐵 × 𝐵))𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)(𝑅 ↾ (𝐵 × 𝐵))(𝐺‘𝑥)))) |
20 | 11, 18, 19 | 3eqtr4d 2787 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f (𝑅 ↾ (𝐵 × 𝐵))𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 〈cop 4575 ↦ cmpt 5168 × cxp 5603 ↾ cres 5607 ⟶wf 6459 ‘cfv 6463 (class class class)co 7313 ∘f cof 7569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-ov 7316 df-oprab 7317 df-mpo 7318 df-of 7571 |
This theorem is referenced by: sitmcl 32424 |
Copyright terms: Public domain | W3C validator |