Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin23 | Structured version Visualization version GIF version |
Description: Every II-finite set
(every chain of subsets has a maximal element) is
III-finite (has no denumerable collection of subsets). The proof here
is the only one I could find, from
http://matwbn.icm.edu.pl/ksiazki/fm/fm6/fm619.pdf
p.94 (writeup by
Tarski, credited to Kuratowski). Translated into English and modern
notation, the proof proceeds as follows (variables renamed for
uniqueness):
Suppose for a contradiction that 𝐴 is a set which is II-finite but not III-finite. For any countable sequence of distinct subsets 𝑇 of 𝐴, we can form a decreasing sequence of nonempty subsets (𝑈‘𝑇) by taking finite intersections of initial segments of 𝑇 while skipping over any element of 𝑇 which would cause the intersection to be empty. By II-finiteness (as fin2i2 10058) this sequence contains its intersection, call it 𝑌; since by induction every subset in the sequence 𝑈 is nonempty, the intersection must be nonempty. Suppose that an element 𝑋 of 𝑇 has nonempty intersection with 𝑌. Thus, said element has a nonempty intersection with the corresponding element of 𝑈, therefore it was used in the construction of 𝑈 and all further elements of 𝑈 are subsets of 𝑋, thus 𝑋 contains the 𝑌. That is, all elements of 𝑋 either contain 𝑌 or are disjoint from it. Since there are only two cases, there must exist an infinite subset of 𝑇 which uniformly either contain 𝑌 or are disjoint from it. In the former case we can create an infinite set by subtracting 𝑌 from each element. In either case, call the result 𝑍; this is an infinite set of subsets of 𝐴, each of which is disjoint from 𝑌 and contained in the union of 𝑇; the union of 𝑍 is strictly contained in the union of 𝑇, because only the latter is a superset of the nonempty set 𝑌. The preceding four steps may be iterated a countable number of times starting from the assumed denumerable set of subsets to produce a denumerable sequence 𝐵 of the 𝑇 sets from each stage. Great caution is required to avoid ax-dc 10186 here; in particular an effective version of the pigeonhole principle (for aleph-null pigeons and 2 holes) is required. Since a denumerable set of subsets is assumed to exist, we can conclude ω ∈ V without the axiom. This 𝐵 sequence is strictly decreasing, thus it has no minimum, contradicting the first assumption. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin23 | ⊢ (𝐴 ∈ FinII → 𝐴 ∈ FinIII) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isf33lem 10106 | . 2 ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} | |
2 | 1 | fin23lem40 10091 | 1 ⊢ (𝐴 ∈ FinII → 𝐴 ∈ FinIII) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 FinIIcfin2 10019 FinIIIcfin3 10021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-rpss 7567 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-seqom 8263 df-1o 8281 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-wdom 9285 df-card 9681 df-fin2 10026 df-fin4 10027 df-fin3 10028 |
This theorem is referenced by: fin1a2s 10154 finngch 10395 fin2so 35743 |
Copyright terms: Public domain | W3C validator |