| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23 | Structured version Visualization version GIF version | ||
| Description: Every II-finite set
(every chain of subsets has a maximal element) is
III-finite (has no denumerable collection of subsets). The proof here
is the only one I could find, from
http://matwbn.icm.edu.pl/ksiazki/fm/fm6/fm619.pdf
p.94 (writeup by
Tarski, credited to Kuratowski). Translated into English and modern
notation, the proof proceeds as follows (variables renamed for
uniqueness):
Suppose for a contradiction that 𝐴 is a set which is II-finite but not III-finite. For any countable sequence of distinct subsets 𝑇 of 𝐴, we can form a decreasing sequence of nonempty subsets (𝑈‘𝑇) by taking finite intersections of initial segments of 𝑇 while skipping over any element of 𝑇 which would cause the intersection to be empty. By II-finiteness (as fin2i2 10278) this sequence contains its intersection, call it 𝑌; since by induction every subset in the sequence 𝑈 is nonempty, the intersection must be nonempty. Suppose that an element 𝑋 of 𝑇 has nonempty intersection with 𝑌. Thus, said element has a nonempty intersection with the corresponding element of 𝑈, therefore it was used in the construction of 𝑈 and all further elements of 𝑈 are subsets of 𝑋, thus 𝑋 contains the 𝑌. That is, all elements of 𝑋 either contain 𝑌 or are disjoint from it. Since there are only two cases, there must exist an infinite subset of 𝑇 which uniformly either contain 𝑌 or are disjoint from it. In the former case we can create an infinite set by subtracting 𝑌 from each element. In either case, call the result 𝑍; this is an infinite set of subsets of 𝐴, each of which is disjoint from 𝑌 and contained in the union of 𝑇; the union of 𝑍 is strictly contained in the union of 𝑇, because only the latter is a superset of the nonempty set 𝑌. The preceding four steps may be iterated a countable number of times starting from the assumed denumerable set of subsets to produce a denumerable sequence 𝐵 of the 𝑇 sets from each stage. Great caution is required to avoid ax-dc 10406 here; in particular an effective version of the pigeonhole principle (for aleph-null pigeons and 2 holes) is required. Since a denumerable set of subsets is assumed to exist, we can conclude ω ∈ V without the axiom. This 𝐵 sequence is strictly decreasing, thus it has no minimum, contradicting the first assumption. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| fin23 | ⊢ (𝐴 ∈ FinII → 𝐴 ∈ FinIII) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf33lem 10326 | . 2 ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} | |
| 2 | 1 | fin23lem40 10311 | 1 ⊢ (𝐴 ∈ FinII → 𝐴 ∈ FinIII) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 FinIIcfin2 10239 FinIIIcfin3 10241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-rpss 7702 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-seqom 8419 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-wdom 9525 df-card 9899 df-fin2 10246 df-fin4 10247 df-fin3 10248 |
| This theorem is referenced by: fin1a2s 10374 finngch 10615 fin2so 37608 |
| Copyright terms: Public domain | W3C validator |