![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin23 | Structured version Visualization version GIF version |
Description: Every II-finite set
(every chain of subsets has a maximal element) is
III-finite (has no denumerable collection of subsets). The proof here
is the only one I could find, from
http://matwbn.icm.edu.pl/ksiazki/fm/fm6/fm619.pdf
p.94 (writeup by
Tarski, credited to Kuratowski). Translated into English and modern
notation, the proof proceeds as follows (variables renamed for
uniqueness):
Suppose for a contradiction that 𝐴 is a set which is II-finite but not III-finite. For any countable sequence of distinct subsets 𝑇 of 𝐴, we can form a decreasing sequence of nonempty subsets (𝑈‘𝑇) by taking finite intersections of initial segments of 𝑇 while skipping over any element of 𝑇 which would cause the intersection to be empty. By II-finiteness (as fin2i2 9426) this sequence contains its intersection, call it 𝑌; since by induction every subset in the sequence 𝑈 is nonempty, the intersection must be nonempty. Suppose that an element 𝑋 of 𝑇 has nonempty intersection with 𝑌. Thus, said element has a nonempty intersection with the corresponding element of 𝑈, therefore it was used in the construction of 𝑈 and all further elements of 𝑈 are subsets of 𝑋, thus 𝑋 contains the 𝑌. That is, all elements of 𝑋 either contain 𝑌 or are disjoint from it. Since there are only two cases, there must exist an infinite subset of 𝑇 which uniformly either contain 𝑌 or are disjoint from it. In the former case we can create an infinite set by subtracting 𝑌 from each element. In either case, call the result 𝑍; this is an infinite set of subsets of 𝐴, each of which is disjoint from 𝑌 and contained in the union of 𝑇; the union of 𝑍 is strictly contained in the union of 𝑇, because only the latter is a superset of the nonempty set 𝑌. The preceding four steps may be iterated a countable number of times starting from the assumed denumerable set of subsets to produce a denumerable sequence 𝐵 of the 𝑇 sets from each stage. Great caution is required to avoid ax-dc 9554 here; in particular an effective version of the pigeonhole principle (for aleph-null pigeons and 2 holes) is required. Since a denumerable set of subsets is assumed to exist, we can conclude ω ∈ V without the axiom. This 𝐵 sequence is strictly decreasing, thus it has no minimum, contradicting the first assumption. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin23 | ⊢ (𝐴 ∈ FinII → 𝐴 ∈ FinIII) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isf33lem 9474 | . 2 ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} | |
2 | 1 | fin23lem40 9459 | 1 ⊢ (𝐴 ∈ FinII → 𝐴 ∈ FinIII) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 FinIIcfin2 9387 FinIIIcfin3 9389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-rpss 7169 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-seqom 7780 df-1o 7797 df-oadd 7801 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-wdom 8704 df-card 9049 df-fin2 9394 df-fin4 9395 df-fin3 9396 |
This theorem is referenced by: fin1a2s 9522 finngch 9763 fin2so 33877 |
Copyright terms: Public domain | W3C validator |